




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省洛陽中學2022-2023學年高三5月仿真考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.2.若函數的圖象如圖所示,則的解析式可能是()A. B. C. D.3.設函數,則使得成立的的取值范圍是().A. B.C. D.4.已知定義在上的奇函數和偶函數滿足(且),若,則函數的單調遞增區間為()A. B. C. D.5.集合的子集的個數是()A.2 B.3 C.4 D.86.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.7.函數圖像可能是()A. B. C. D.8.設雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標準方程為()A. B.C. D.9.已知為銳角,且,則等于()A. B. C. D.10.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)11.某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖,90后從事互聯網行業崗位分布條形圖,則下列結論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯網行業從業人員中90后占一半以上B.互聯網行業中從事技術崗位的人數超過總人數的C.互聯網行業中從事運營崗位的人數90后比80前多D.互聯網行業中從事技術崗位的人數90后比80后多12.是虛數單位,則()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.秦九韶算法是南宋時期數學家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為______.14.已知的展開式中含有的項的系數是,則展開式中各項系數和為______.15.直線過圓的圓心,則的最小值是_____.16.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當a=2時,求不等式的解集;(2)設函數.當時,,求的取值范圍.18.(12分)已知函數,直線是曲線在處的切線.(1)求證:無論實數取何值,直線恒過定點,并求出該定點的坐標;(2)若直線經過點,試判斷函數的零點個數并證明.19.(12分)設前項積為的數列,(為常數),且是等差數列.(I)求的值及數列的通項公式;(Ⅱ)設是數列的前項和,且,求的最小值.20.(12分)如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中點,AC,BD交于點O.(1)求證:OE∥平面PBC;(2)求三棱錐E﹣PBD的體積.21.(12分)已知函數,.(1)若對于任意實數,恒成立,求實數的范圍;(2)當時,是否存在實數,使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.22.(10分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查.各組人數統計如下:小組甲乙丙丁人數12969(1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數,求隨機變量的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..2.A【解析】
由函數性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數在第一象限的圖象無增區間,故D錯誤;故選:A.【點睛】本題考查已知函數的圖象判斷解析式問題,通過函數性質及特殊值利用排除法是解決本題的關鍵,難度一般.3.B【解析】
由奇偶性定義可判斷出為偶函數,由單調性的性質可知在上單調遞增,由此知在上單調遞減,從而將所求不等式化為,解絕對值不等式求得結果.【詳解】由題意知:定義域為,,為偶函數,當時,,在上單調遞增,在上單調遞減,在上單調遞增,則在上單調遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數的單調性和奇偶性求解函數不等式的問題;奇偶性的作用是能夠確定對稱區間的單調性,單調性的作用是能夠將函數值的大小關系轉化為自變量的大小關系,進而化簡不等式.4.D【解析】
根據函數的奇偶性用方程法求出的解析式,進而求出,再根據復合函數的單調性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調遞增,所以函數的單調遞增區間為.故選:D.【點睛】本題考查求函數的解析式、函數的性質,要熟記復合函數單調性判斷方法,屬于中檔題.5.D【解析】
先確定集合中元素的個數,再得子集個數.【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數問題,含有個元素的集合其子集有個,其中真子集有個.6.A【解析】
設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.7.D【解析】
先判斷函數的奇偶性可排除選項A,C,當時,可分析函數值為正,即可判斷選項.【詳解】,,即函數為偶函數,故排除選項A,C,當正數越來越小,趨近于0時,,所以函數,故排除選項B,故選:D【點睛】本題主要考查了函數的奇偶性,識別函數的圖象,屬于中檔題.8.C【解析】
由題得,,又,聯立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標準方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,圓的方程的有關計算,考查了學生的計算能力.9.C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數式化簡求值公式的靈活運用的能力,屬于基礎題.10.D【解析】
求函數的值域得集合,求定義域得集合,根據交集和補集的定義寫出運算結果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點睛】該題考查的是有關集合的問題,涉及到的知識點有函數的定義域,函數的值域,集合的運算,屬于基礎題目.11.D【解析】
根據兩個圖形的數據進行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯網行業從業者年齡分別餅狀圖得到互聯網行業從業人員中90后占56%,所以是正確的;在B中,由整個互聯網行業從業者年齡分別餅狀圖,90后從事互聯網行業崗位分布條形圖得到:,互聯網行業從業技術崗位的人數超過總人數的,所以是正確的;在C中,由整個互聯網行業從業者年齡分別餅狀圖,90后從事互聯網行業崗位分別條形圖得到:,互聯網行業從事運營崗位的人數90后比80后多,所以是正確的;在D中,互聯網行業中從事技術崗位的人數90后所占比例為,所以不能判斷互聯網行業中從事技術崗位的人數90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統計圖表中餅狀圖和條形圖的性質等基礎知識的應用,著重考查了推理與運算能力,屬于基礎題.12.C【解析】
由復數除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復數的除法和模,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1055【解析】
模擬執行程序框圖中的程序,即可求得結果.【詳解】模擬執行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.【點睛】本題考查程序框圖的模擬執行,屬基礎題.14.1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數是,解得,令得:展開式中各項系數和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.15.【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標準方程、“乘1法”和基本不等式的性質,屬于基礎題.16.【解析】
甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.18.(1)見解析,(2)函數存在唯一零點.【解析】
(1)首先求出導函數,利用導數的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據方程即可求出定點.(2)由(1)求出函數,令方程可轉化為記,利用導數判斷函數在上單調遞增,根據,由零點存在性定理即可求出零點個數.【詳解】所以直線方程為即,恒過點將代入直線方程,得考慮方程即,等價于記,則于是函數在上單調遞增,又所以函數在區間上存在唯一零點,即函數存在唯一零點.【點睛】本題考查了導數的幾何意義、直線過定點、利用導數研究函數的單調性、零點存在性定理,屬于難題.19.(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)當時,由,得到,兩邊同除以,得到.再根據是等差數列.求解.(Ⅱ),根據前n項和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當時,,所以,即,所以.因為是等差數列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數列是遞增數列,所以,即.【點睛】本題主要考查等差數列的定義,前n項和以及數列的增減性,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.20.(1)證明見解析(2)【解析】
(1)連接OE,利用三角形中位線定理得到OE∥PC,即可證出OE∥平面PBC;(2)由E是PA的中點,,求出S△ABD,即可求解.【詳解】(1)證明:如圖所示:∵點O,E分別是AC,PA的中點,∴OE是△PAC的中位線,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD為菱形,∠BAD=60°,∴S△ABD,∴三棱錐E﹣PBD的體積.【點睛】本題考查空間線、面位置關系,證明直線與平面平行以及求三棱錐的體積,注意等體積法的應用,考查邏輯推理、數學計算能力,屬于基礎題.21.(1);(2)不存在實數,使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數為,引入新函數,利用導數求得函數最值即可;(2),導出導函數,問題轉化為在上有解.再用導數研究的性質可得.【詳解】解:(1)因為當時,恒成立,所以,若,為任意實數,恒成立.若,恒成立,即當時,,設,,當時,,則在上單調遞增,當時,,則在上單調遞減,所以當時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東坡成就介紹課件
- 上海市奉賢區2025屆高三下學期二模試題 歷史 含解析
- 專業職業課件
- 合伙合同與終止合同
- 遼寧省沈陽市五校協作體2024-2025學年高考模擬試卷(1)語文試題含解析
- 山東理工大學《數據結構中俄》2023-2024學年第一學期期末試卷
- 山東省青島市第十六中學2025年重慶一中初三4月月考物理試題含解析
- 銷售合同書范文
- 店鋪租賃合同模板
- 云南省德宏市重點中學2025屆初三5月模擬考試自選試題含解析
- 養老院安全知識培訓課件
- 基礎教育教學研究項目結項鑒定審批書
- 中小學生心理健康教育課件
- 2025年03月北京住房公積金管理中心(北京市住房資金管理中心)公開招聘8人筆試歷年參考題庫考點剖析附解題思路及答案詳解
- 預防觸電知識培訓
- 中藥煎藥室工作制度和流程
- 國開2025年《會計政策判斷與選擇》形考任務1-9答案
- 京瓷哲學學習與應用課件
- 2025年河南對外經濟貿易職業學院單招職業適應性測試題庫新版
- 撒哈拉以南非洲(第2課時)課件-2024~2025學年人教版初中地理七年級下冊
- 2025年甘肅財貿職業學院單招職業適應性考試題庫有答案
評論
0/150
提交評論