河北省唐山一中等五校重點中學2023-2024學年3月高三第一次在線大聯考(山東卷)_第1頁
河北省唐山一中等五校重點中學2023-2024學年3月高三第一次在線大聯考(山東卷)_第2頁
河北省唐山一中等五校重點中學2023-2024學年3月高三第一次在線大聯考(山東卷)_第3頁
河北省唐山一中等五校重點中學2023-2024學年3月高三第一次在線大聯考(山東卷)_第4頁
河北省唐山一中等五校重點中學2023-2024學年3月高三第一次在線大聯考(山東卷)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省唐山一中等五校重點中學2022-2023學年3月高三第一次在線大聯考(山東卷)注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,平面ABCD,ABCD為正方形,且,E,F分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.2.已知α,β表示兩個不同的平面,l為α內的一條直線,則“α∥β是“l∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件3.若的展開式中二項式系數和為256,則二項式展開式中有理項系數之和為()A.85 B.84 C.57 D.564.已知為虛數單位,實數滿足,則()A.1 B. C. D.5.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直6.已知數列的前項和為,且,,,則的通項公式()A. B. C. D.7.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.68.某部隊在一次軍演中要先后執行六項不同的任務,要求是:任務A必須排在前三項執行,且執行任務A之后需立即執行任務E,任務B、任務C不能相鄰,則不同的執行方案共有()A.36種 B.44種 C.48種 D.54種9.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.10.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.11.已知集合,,則=()A. B. C. D.12.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現象.為考察共享經濟對企業經濟活躍度的影響,在四個不同的企業各取兩個部門進行共享經濟對比試驗,根據四個企業得到的試驗數據畫出如下四個等高條形圖,最能體現共享經濟對該部門的發展有顯著效果的圖形是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,,且,則向量與的夾角的大小為________.14.如圖,已知圓內接四邊形ABCD,其中,,,,則__________.15.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.16.在各項均為正數的等比數列中,,且,成等差數列,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著現代社會的發展,我國對于環境保護越來越重視,企業的環保意識也越來越強.現某大型企業為此建立了5套環境監測系統,并制定如下方案:每年企業的環境監測費用預算定為1200萬元,日常全天候開啟3套環境監測系統,若至少有2套系統監測出排放超標,則立即檢查污染源處理系統;若有且只有1套系統監測出排放超標,則立即同時啟動另外2套系統進行1小時的監測,且后啟動的這2套監測系統中只要有1套系統監測出排放超標,也立即檢查污染源處理系統.設每個時間段(以1小時為計量單位)被每套系統監測出排放超標的概率均為,且各個時間段每套系統監測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統的概率;(2)若每套環境監測系統運行成本為300元/小時(不啟動則不產生運行費用),除運行費用外,所有的環境監測系統每年的維修和保養費用需要100萬元.現以此方案實施,問該企業的環境監測費用是否會超過預算(全年按9000小時計算)?并說明理由.18.(12分)已知函數,函數在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調性;(2)對于函數圖象上的不同兩點,,如果在函數圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.19.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.20.(12分)已知數列{an}的各項均為正,Sn為數列{an}的前n項和,an2+2an=4Sn+1.(1)求{an}的通項公式;(2)設bn,求數列{bn}的前n項和.21.(12分)已知,函數有最小值7.(1)求的值;(2)設,,求證:.22.(10分)△ABC的內角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.2.A【解析】試題分析:利用面面平行和線面平行的定義和性質,結合充分條件和必要條件的定義進行判斷.解:根據題意,由于α,β表示兩個不同的平面,l為α內的一條直線,由于“α∥β,則根據面面平行的性質定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結論,反之不成立,∴“α∥β是“l∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.3.A【解析】

先求,再確定展開式中的有理項,最后求系數之和.【詳解】解:的展開式中二項式系數和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數之和為:故選:A【點睛】考查二項式的二項式系數及展開式中有理項系數的確定,基礎題.4.D【解析】,則故選D.5.D【解析】

根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.6.C【解析】

利用證得數列為常數列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數列,所以,故.故選:C【點睛】本小題考查數列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.7.C【解析】

由橢圓的定義以及雙曲線的定義、離心率公式化簡,結合基本不等式即可求解.【詳解】設橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.8.B【解析】

分三種情況,任務A排在第一位時,E排在第二位;任務A排在第二位時,E排在第三位;任務A排在第三位時,E排在第四位,結合任務B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務分別為A、B、C、D、E、F,如果任務A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側,排列方法有,可能都在A、E的右側,排列方法有;如果任務A排在第三位時,E排在第四位,則B,C分別在A、E的兩側;所以不同的執行方案共有種.【點睛】本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題.9.A【解析】

推導出,分別取的中點,連結,則,推導出,從而,進而四面體的體積為,由此能求出結果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結,則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關系等基礎知識,考查運算求解能力.10.D【解析】

先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數,再得到甲第一個到、丙第三個到的基本事件的種數,利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎題.11.C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.12.D【解析】根據四個列聯表中的等高條形圖可知,圖中D中共享與不共享的企業經濟活躍度的差異最大,它最能體現共享經濟對該部門的發展有顯著效果,故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由,解得,進而求出,即可得出結果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎知識;考查運算求解能力,屬于基礎題.14.【解析】

由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內接四邊形的性質可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點睛】本題考查余弦定理解三角形,同角三角函數基本關系,意在考查方程思想,計算能力,屬于中檔題型,本題的關鍵是熟悉圓內接四邊形的性質,對角互補.15.【解析】

求的最小值可以轉化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現了數形結合的數學思想.16.【解析】

利用等差中項的性質和等比數列通項公式得到關于的方程,解方程求出代入等比數列通項公式即可.【詳解】因為,成等差數列,所以,由等比數列通項公式得,,所以,解得或,因為,所以,所以等比數列的通項公式為.故答案為:【點睛】本題考查等差中項的性質和等比數列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數列通項公式是求解本題的關鍵;屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)不會超過預算,理由見解析【解析】

(1)求出某個時間段在開啟3套系統就被確定需要檢查污染源處理系統的概率為,某個時間段在需要開啟另外2套系統才能確定需要檢查污染源處理系統的概率為,可得某個時間段需要檢查污染源處理系統的概率;(2)設某個時間段環境監測系統的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導,研究函數的單調性,可得期望的最大值,從而得出結論.【詳解】(1)某個時間段在開啟3套系統就被確定需要檢查污染源處理系統的概率為,某個時間段在需要開啟另外2套系統才能確定需要檢查污染源處理系統的概率為某個時間段需要檢查污染源處理系統的概率為.(2)設某個時間段環境監測系統的運行費用為元,則的可能取值為900,1500.,令,則當時,,在上單調遞增;當時,,在上單調遞減,的最大值為,實施此方案,最高費用為(萬元),,故不會超過預算.【點睛】本題考查獨立重復事件發生的概率、期望,及運用求導函數研究期望的最值,由根據期望值確定方案,此類題目解決的關鍵在于將生活中的量轉化為數學中和量,屬于中檔題.18.(1),單調性見解析;(2)不存在,理由見解析【解析】

(1)由題意得,即可得;求出函數的導數,再根據、、、分類討論,分別求出、的解集即可得解;(2)假設滿足條件的、存在,不妨設,且,由題意得可得,令(),構造函數(),求導后證明即可得解.【詳解】(1)由題可得函數的定義域為且,由,整理得..(ⅰ)當時,易知,,時.故在上單調遞增,在上單調遞減.(ⅱ)當時,令,解得或,則①當,即時,在上恒成立,則在上遞增.②當,即時,當時,;當時,.所以在上單調遞增,單調遞減,單調遞增.③當,即時,當時,;當時,.所以在上單調遞增,單調遞減,單調遞增.綜上,當時,在上單調遞增,在單調遞減.當時,在及上單調遞增;在上單調遞減.當時,在上遞增.當時,在及上單調遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設滿足條件的、存在,不妨設,且,則,又,由題可知,整理可得:,令(),構造函數().則,所以在上單調遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【點睛】本題考查了導數的應用,考查了計算能力和轉化化歸思想,屬于中檔題.19.(1)(2)【解析】

(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應用,屬于中檔題.20.(1)an=2n+1;(2)2.【解析】

(1)根據題意求出首項,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數列為等差數列即可求得通項公式;(2)利用錯位相減法進行數列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵數列{an}的各項均為正,∴an+1﹣an=2,∴數列{an}是首項為1、公差為2的等差數列,∴數列{an}的通項公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,記數列{b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論