達州市重點中學2024年高三三模(最后一卷)數學試題試卷_第1頁
達州市重點中學2024年高三三模(最后一卷)數學試題試卷_第2頁
達州市重點中學2024年高三三模(最后一卷)數學試題試卷_第3頁
達州市重點中學2024年高三三模(最后一卷)數學試題試卷_第4頁
達州市重點中學2024年高三三模(最后一卷)數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

達州市重點中學2023年高三三模(最后一卷)數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知且,函數,若,則()A.2 B. C. D.2.從拋物線上一點(點在軸上方)引拋物線準線的垂線,垂足為,且,設拋物線的焦點為,則直線的斜率為()A. B. C. D.3.二項式展開式中,項的系數為()A. B. C. D.4.已知函數的部分圖象如圖所示,則()A. B. C. D.5.定義:表示不等式的解集中的整數解之和.若,,,則實數的取值范圍是A. B. C. D.6.設集合,,則().A. B.C. D.7.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.8.已知函數,若函數的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.9.函數的大致圖象為A. B.C. D.10.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁11.關于圓周率π,數學發展史上出現過許多很有創意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數對;再統計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統計數估計的值,那么可以估計的值約為()A. B. C. D.12.函數的大致圖象是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.14.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.15.已知是夾角為的兩個單位向量,若,,則與的夾角為______.16.根據如圖的算法,輸出的結果是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)管道清潔棒是通過在管道內釋放清潔劑來清潔管道內壁的工具,現欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內恰好處于位置(圖中給出的數據是圓管內壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.18.(12分)已知函數.(1)討論的單調性;(2)函數,若對于,使得成立,求的取值范圍.19.(12分)已知關于的不等式有解.(1)求實數的最大值;(2)若,,均為正實數,且滿足.證明:.20.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統一高考科目成績和自主選擇的3門普通高中學業水平等級考試科目成績組成,總分為750分.其中,統一高考科目為語文、數學、外語,自主選擇的3門普通高中學業水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數區間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績為67.(1)某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區間(72,84)的人數;(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區間[61,80]的人數,求X的分布列和數學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68221.(12分)直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.(1)求的方程;(2)設點為拋物線的焦點,當面積最小時,求直線的方程.22.(10分)已知,且的解集為.(1)求實數,的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據分段函數的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數的應用,由分段函數解析式求自變量.2.A【解析】

根據拋物線的性質求出點坐標和焦點坐標,進而求出點的坐標,代入斜率公式即可求解.【詳解】設點的坐標為,由題意知,焦點,準線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質,考查運算求解能力;屬于基礎題.3.D【解析】

寫出二項式的通項公式,再分析的系數求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.4.A【解析】

先利用最高點縱坐標求出A,再根據求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數的據圖求式問題以及三角函數的公式變換.據圖求式問題要注意結合五點法作圖求解.屬于中檔題.5.D【解析】

由題意得,表示不等式的解集中整數解之和為6.當時,數形結合(如圖)得的解集中的整數解有無數多個,解集中的整數解之和一定大于6.當時,,數形結合(如圖),由解得.在內有3個整數解,為1,2,3,滿足,所以符合題意.當時,作出函數和的圖象,如圖所示.若,即的整數解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數的取值范圍是.故選D.6.D【解析】

根據題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,7.C【解析】

由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.8.C【解析】

對此分段函數的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環,而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經單調性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數極值的求解,從函數表達式中抽離出相應的等差數列和等比數列,最后分組求和,要求學生對數列和函數的熟悉程度高,為中檔題9.A【解析】

因為,所以函數是偶函數,排除B、D,又,排除C,故選A.10.C【解析】

分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發,推理出矛盾的結論,說明這種情形不會發生,考查了分析能力和推理能力,屬于中檔題.11.D【解析】

由試驗結果知對0~1之間的均勻隨機數,滿足,面積為1,再計算構成鈍角三角形三邊的數對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據題意知,名同學取對都小于的正實數對,即,對應區域為邊長為的正方形,其面積為,若兩個正實數能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.12.A【解析】

利用函數的對稱性及函數值的符號即可作出判斷.【詳解】由題意可知函數為奇函數,可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數圖象的判斷,函數對稱性的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】

雙曲線的焦點在軸上,漸近線為,結合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應形式是求解的關鍵,側重考查數學運算的核心素養.14.【解析】

根據個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質,考查了推理能力與計算能力,屬于中檔題.15.【解析】

依題意可得,再根據求模,求數量積,最后根據夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數量積的運算律,以及夾角的計算,屬于基礎題.16.55【解析】

根據該For語句的功能,可得,可得結果【詳解】根據該For語句的功能,可得則故答案為:55【點睛】本題考查For語句的功能,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)過作的垂線,垂足為,易得,進一步可得;(2)利用導數求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設,則,令,則,即.設,且,則當時,,所以單調遞減;當時,,所以單調遞增,所以當時,取得極小值,所以.因為,所以,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.【點睛】本題考查導數在實際問題中的應用,考查學生的數學運算求解能力,是一道中檔題.18.(1)當時,在上增;當時,在上減,在上增(2)【解析】

(1)求出導函數,分類討論確定的正負,確定單調區間;(2)題意說明,利用導數求出的最小值,由(1)可得的最小值,從而得出結論.【詳解】解:(1)定義域為當時,即在上增;當時,即得得綜上所述,當時,在上增;當時,在上減,在上增(2)由題在上增由(1)當時,在上增,所以此時無最小值;當時,在上減,在上增,即,解得綜上【點睛】本題考查用導數求函數的單調區間,考查不等式恒成立問題,解題關鍵是掌握轉化與化歸思想,本題恒成立問題轉化為,求出兩函數的最小值后可得結論.19.(1);(2)見解析【解析】

(1)由題意,只需找到的最大值即可;(2),構造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關于的不等式有解等價于,(ⅰ)當時,上述不等式轉化為,解得,(ⅱ)當時,上述不等式轉化為,解得,綜上所述,實數的取值范圍為,則實數的最大值為3,即.(2)證明:根據(1)求解知,所以,又∵,,,,,當且僅當時,等號成立,即,∴,所以,.【點睛】本題考查絕對值不等式中的能成立問題以及綜合法證明不等式問題,是一道中檔題.20.(1)(i)83.;(ii)272.(2)見解析.【解析】

(1)根據原始分數分布區間及轉換分區間,結合所給示例,即可求得小明轉換后的物理成績;根據正態分布滿足N60,122(2)根據各等級人數所占比例可知在區間61,80內的概率為25,由二項分布即可求得X【詳解】(1)(i)設小明轉換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉換后的物理成績為83分;(ii)因為物理考試原始分基本服從正態分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區間72,84的人數為2000×0.136=272(人);(2)由題意得,隨機抽取1人,其等級成績在區間6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論