2024-2025學(xué)年北京市高一上冊(cè)12月月考數(shù)學(xué)檢測(cè)試卷(含解析)_第1頁(yè)
2024-2025學(xué)年北京市高一上冊(cè)12月月考數(shù)學(xué)檢測(cè)試卷(含解析)_第2頁(yè)
2024-2025學(xué)年北京市高一上冊(cè)12月月考數(shù)學(xué)檢測(cè)試卷(含解析)_第3頁(yè)
2024-2025學(xué)年北京市高一上冊(cè)12月月考數(shù)學(xué)檢測(cè)試卷(含解析)_第4頁(yè)
2024-2025學(xué)年北京市高一上冊(cè)12月月考數(shù)學(xué)檢測(cè)試卷(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024-2025學(xué)年北京市高一上學(xué)期12月月考數(shù)學(xué)檢測(cè)試卷本試卷共4頁(yè),120分.考試時(shí)長(zhǎng)90分鐘.考生務(wù)必將答案答在答題卡上,在試卷上作答無效.考試結(jié)束后,將答題卡交回.一、選擇題:本大題共10小題,每小題4分,共40分.在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng).1.設(shè)全集為,,,則(

)A. B. C. D.2.下列函數(shù)中,是奇函數(shù)且在定義域內(nèi)單調(diào)遞減的是(

)A. B. C. D.3.已知是定義在上的偶函數(shù),當(dāng)時(shí),,則(

)A. B.0 C.1 D.24.設(shè),,,則a,b,c的大小關(guān)系是(

)A. B. C. D.5.已知函數(shù),下列區(qū)間中含有零點(diǎn)的是(

)A. B. C. D.6.函數(shù)的圖象大致為(

)A. B.C. D.7.下列說法錯(cuò)誤的是(

)A.命題“,使得”是真命題B.若,則“”是“”的充要條件C.當(dāng)時(shí),方程恰有四個(gè)實(shí)根D.命題“”的否定為“”8.在不考慮空氣阻力的條件下,火箭的最大速度(單位:與燃料的質(zhì)量(單位:),火箭(除燃料外)的質(zhì)量(單位:)的函數(shù)關(guān)系是.當(dāng)燃料質(zhì)量與火箭質(zhì)量的比值為時(shí),火箭的最大速度可達(dá)到.若要使火箭的最大速度達(dá)到,則燃料質(zhì)量與火箭質(zhì)量的比值應(yīng)為(

)A. B. C. D.9.已知是函數(shù)的圖像上的相異兩點(diǎn),若點(diǎn)到直線的距離相等,則點(diǎn)的橫坐標(biāo)之和的取值范圍是(

)A. B.C. D.10.對(duì)于函數(shù),若存在,使,則稱點(diǎn)是曲線的“優(yōu)美點(diǎn)”,已知,若曲線存在“優(yōu)美點(diǎn)”,則實(shí)數(shù)的取值范圍為(

)A. B.C. D.二、填空題:本大題共5小題,每小題4分,共20分.11.不等式的解集為.12.已知冪函數(shù)的圖象經(jīng)過點(diǎn),那么.13.已知函數(shù)為偶函數(shù),且定義域?yàn)椋瑒t14.已知函數(shù)有唯一零點(diǎn),則實(shí)數(shù)的值是.15.設(shè)函數(shù)①當(dāng)時(shí),;②若恰有2個(gè)零點(diǎn),則a的取值范圍是.三、解答題:本大題共5小題,共60分.解答應(yīng)寫出文字說明,演算步驟或證明過程.16.計(jì)算:(1)(2)17.已知函數(shù),且.(1)求的值;(2)判斷在上的單調(diào)性,并用定義證明.(3)求不等式的解集.18.已知函數(shù)的定義域?yàn)椋鋱D象關(guān)于原點(diǎn)對(duì)稱.當(dāng)時(shí),.(1)求函數(shù)的解析式.(2)求不等式的解集.(3)設(shè)函數(shù)其中的定義域?yàn)榧希簦髮?shí)數(shù)的取值范圍.19.已知函數(shù).(1)求函數(shù)的定義域.(2)判斷函數(shù)的奇偶性,并說明理由.(3)對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.20.集合由有限個(gè)實(shí)數(shù)組成,定義集合的離距如下:實(shí)數(shù)軸上,集合中的每個(gè)實(shí)數(shù)對(duì)應(yīng)一個(gè)點(diǎn),實(shí)數(shù)對(duì)應(yīng)的點(diǎn)與所有這些點(diǎn)的距離的算術(shù)平均數(shù)記為,稱函數(shù)的最小值為集合的離距,記為.例如,集合的離距是0,集合的離距是2.(1)分別求出集合的離距;(2)求數(shù)集的離距;(3)已知非空數(shù)集滿足,試寫出一個(gè)關(guān)于的大小關(guān)系的等式或不等式,并給出證明.1.A【分析】利用集合的補(bǔ)集和交集運(yùn)算求解.【詳解】解:因?yàn)槿癁椋裕郑裕裕蔬x:A2.D【分析】利用函數(shù)的奇偶性,排除BC,再結(jié)合函數(shù)的單調(diào)性,排除A.可得正確結(jié)果.【詳解】對(duì)A:,所以為奇函數(shù),又與都是上的增函數(shù),所以是上的增函數(shù),故A錯(cuò);對(duì)B:,故為偶函數(shù),故B錯(cuò);對(duì)C:的定義域?yàn)椋屎瘮?shù)為非奇非偶函數(shù),故C錯(cuò);對(duì)D:,所以為奇函數(shù),又為上的增函數(shù),所以是上的減函數(shù),故D對(duì).故選:D3.C【分析】由偶函數(shù)性質(zhì)以及對(duì)數(shù)運(yùn)算即可求解.【詳解】已知是定義在上的偶函數(shù),當(dāng)時(shí),,則.故選:C.4.D【分析】根據(jù)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性求出的范圍,即可解出.【詳解】因?yàn)椋裕蔬x:D.5.D【分析】利用零點(diǎn)存在性定理分析判斷即可【詳解】因?yàn)樵谏蠁握{(diào)遞增,在和上單調(diào)遞增,所以在和上單調(diào)遞增,當(dāng)時(shí),,所以在上無零點(diǎn),因?yàn)椋栽趨^(qū)間有零點(diǎn),故選:D6.A【分析】由解析式判斷奇偶性及的符號(hào),即可確定圖象.【詳解】由且定義域?yàn)椋詾槠婧瘮?shù),排除C、D;又,排除B.故選:A.7.C【分析】對(duì)于A,對(duì)代數(shù)式配方后分析判斷,對(duì)于B,根據(jù)充分條件和必要條件的定義分析判斷,對(duì)于C,令,,作出兩函數(shù)的圖象,結(jié)合圖象分析判斷,對(duì)于D,根據(jù)命題的否定的定義分析判斷.【詳解】對(duì)于A,因?yàn)椋悦}“,使得”是真命題,所以A正確,對(duì)于B,時(shí),在上遞增,所以當(dāng)時(shí),有,反之也成立,所以若,則“”是“”的充要條件,所以B正確,對(duì)于C,令,,的圖象如圖所示,由圖可知當(dāng)時(shí),兩函數(shù)圖象有4個(gè)交點(diǎn),此時(shí)方程恰有四個(gè)實(shí)根,當(dāng)時(shí),兩函數(shù)圖象有2個(gè)交點(diǎn),此時(shí)方程恰有兩個(gè)實(shí)根,所以C錯(cuò)誤,對(duì)于D,命題“”的否定為“”,所以D正確,故選:C8.B【分析】設(shè)燃料質(zhì)量與火箭質(zhì)量的比值為時(shí),火箭的最大速度達(dá)到,根據(jù)題意得到,列出方程,即可求解.【詳解】設(shè)燃料質(zhì)量與火箭質(zhì)量的比值為時(shí),火箭的最大速度達(dá)到,根據(jù)題意得,所以,所以,可得,所以,即要使火箭的最大速度達(dá)到,則燃料質(zhì)量與火箭質(zhì)量的比值應(yīng)為.故選:B.9.D【分析】根據(jù)題意,得到,得到,結(jié)合基本不等式,即可求解.【詳解】不妨設(shè),且,根據(jù)題意,可得,可得,由基本不等式,可得,可得,解得,即點(diǎn)的橫坐標(biāo)之和的取值范圍是.故選:D.10.B【分析】存在,使,則函數(shù)圖象上存在兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,所以只要把的圖象關(guān)于原點(diǎn)對(duì)稱后與射線有公共點(diǎn)即可.【詳解】由題意可知,若函數(shù)存在“優(yōu)美點(diǎn)”,則函數(shù)圖象上存在關(guān)于原點(diǎn)對(duì)稱的點(diǎn),當(dāng)時(shí),,將其圖象關(guān)于原點(diǎn)對(duì)稱,如圖,所得圖象的解析式為,所以只要射線與的圖象有公共點(diǎn)即可,圖中射線與的圖象相切,由,得,由,得,由圖象可知,所以,即實(shí)數(shù)的取值范圍為,故選:B關(guān)鍵點(diǎn)點(diǎn)睛:此題考查新定義問題,考查函數(shù)與方程的綜合問題,解題的關(guān)鍵是問題的轉(zhuǎn)化,題中新概念“優(yōu)美點(diǎn)”,轉(zhuǎn)化為函數(shù)圖象上存在關(guān)于原點(diǎn)對(duì)稱的點(diǎn),再轉(zhuǎn)化為射線與的圖象有公共點(diǎn)即可,考查轉(zhuǎn)化能力和數(shù)形結(jié)合的思想,屬于較難題.11.【分析】將原不等式等價(jià)轉(zhuǎn)化為,然后解該二次不等式可得出結(jié)果.【詳解】不等式等價(jià)于,解得,因此,不等式的解集為,故答案為.本題考查分式不等式的解法,解題的關(guān)鍵就是將分式不等式化為標(biāo)準(zhǔn)形式,轉(zhuǎn)化為整式不等式求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.12.【分析】先將點(diǎn)代入函數(shù)求出,進(jìn)而可得.【詳解】將點(diǎn)代入得,所以.所以.故答案為.13.【分析】由函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱可求得的值,再由函數(shù)為偶函數(shù)可求得的值,由此可求得的值.【詳解】由于函數(shù)為偶函數(shù),且定義域?yàn)椋瑒t,解得,由,可得,對(duì)任意的恒成立,可得,即,因此,.故答案為.14.2【分析】利用換元法把原函數(shù)轉(zhuǎn)化為一個(gè)偶函數(shù),因?yàn)榕己瘮?shù)圖象的對(duì)稱性,函數(shù)只有一個(gè)零點(diǎn),必有,可求的值.【詳解】設(shè),則原函數(shù)可化為:,因?yàn)椋詾槎x在上的偶函數(shù).原函數(shù)只有唯一零點(diǎn),轉(zhuǎn)化為有唯一零點(diǎn),又的圖象關(guān)于軸對(duì)稱,所以只有.故15.【分析】由分段函數(shù)解析式先求,再求的值,結(jié)合零點(diǎn)的定義分段求零點(diǎn),由條件求a的取值范圍.【詳解】當(dāng)時(shí),,所以,所以,令,可得當(dāng)時(shí),,所以或,當(dāng)或時(shí),方程在上有唯一解,當(dāng)或時(shí),方程在上的解為或,當(dāng)時(shí),,所以當(dāng)時(shí),,當(dāng)時(shí),方程在上無解,綜上,當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn),當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),因?yàn)榍∮?個(gè)零點(diǎn),所以或,所以a的取值范圍是.故;.16.(1)(2)【分析】(1)根據(jù)題意,結(jié)合指數(shù)冪的運(yùn)算性質(zhì),準(zhǔn)確運(yùn)算,即可求解;(2)根據(jù)題意,結(jié)合對(duì)數(shù)的運(yùn)算法和運(yùn)算性質(zhì),準(zhǔn)確計(jì)算,即可求解.【詳解】(1)解:由指數(shù)冪的運(yùn)算性質(zhì),可得.(2)解:由對(duì)數(shù)的運(yùn)算性質(zhì),可得17.(1)(2)在上的單調(diào)遞減,證明見解析(3)【分析】(1)由可求得的值;(2)任取,且,然后計(jì)算變形,再判斷符號(hào),可得結(jié)論;(3)由的單調(diào)性,將問題轉(zhuǎn)化為,再令,可得,求出的范圍,從而可求得的范圍.【詳解】(1)由,得,則.(2)在上的單調(diào)遞減.證明如下:任取,且,則,∵,且,,∴,即,在上單調(diào)遞減.(3)由(2)可得,在上單調(diào)遞減,而,則由可得,令,可得.解得:或.所以或.不等式的解集為18.(1)(2)(3)【分析】由時(shí),,根據(jù)為奇函數(shù),求得,結(jié)合,即可求得函數(shù)的解析式;(2)由(1)中函數(shù)的解析式,結(jié)合對(duì)數(shù)的運(yùn)算法則,準(zhǔn)確運(yùn)算,即可求解;(3)根據(jù)函數(shù)的解析式,求得函數(shù)的定義域,結(jié)合可得,即,,即可求解.【詳解】(1)解:因?yàn)楹瘮?shù)的定義域?yàn)椋鋱D象關(guān)于原點(diǎn)對(duì)稱,當(dāng)時(shí),.當(dāng)時(shí),,則,因?yàn)闉槠婧瘮?shù),所以,可得,即,綜上可得,函數(shù)的解析式為.(2)解:當(dāng)時(shí),,解得;當(dāng)時(shí),,解得,當(dāng)時(shí),不等式成立.綜上可得,不等式的解集為(3)解:由函數(shù)的定義域,可得,即,又因?yàn)椋缘亩x域,又因?yàn)椋裕宜詫?shí)數(shù)的取值范圍是.19.(1)(2)函數(shù)為非奇非偶函數(shù),理由見解析;(3)【分析】(1)根據(jù)函數(shù)的解析式有意義,得出不等式組,即可求解;(2)根據(jù)函數(shù)的定義域的不關(guān)于原點(diǎn)對(duì)稱,即可得到結(jié)論;(3)根據(jù)題意,轉(zhuǎn)化為,根據(jù)函數(shù)的單調(diào)性,求得,得到,法一:轉(zhuǎn)化為,令,求得,即可求解;法二:分,和,結(jié)合二次函數(shù)的性質(zhì),列出不等式,即可求解.【詳解】(1)解:由函數(shù)有意義,則滿足,解得,所以函數(shù)的定義域?yàn)?(2)解:因?yàn)榈亩x域?yàn)椋魂P(guān)于原點(diǎn)對(duì)稱,所以函數(shù)為非奇非偶函數(shù).(3)解:由“對(duì),不等式恒成立”,可得,當(dāng)時(shí),由在上單調(diào)遞減,,根據(jù)題意得,對(duì)法一:可轉(zhuǎn)化為,令,由在上單調(diào)遞減得,可得,實(shí)數(shù)的取值范圍為.法二:設(shè)函數(shù),①當(dāng),即時(shí),在上單調(diào)遞減,可得,解得,則;②當(dāng),即時(shí),在上單調(diào)遞增,可得,解得,則;③當(dāng),即時(shí),在先減后增,可得,解得,所以,綜上,實(shí)數(shù)的取值范圍為.20.(1)(2)(3)答案見解析【分析】(1)先根據(jù)題目條件理解集合離距的概念,得出,代入計(jì)算即可;(2)根據(jù)上述公式,代入計(jì)算;(3)例如,集合的元素個(gè)數(shù)都是偶數(shù)時(shí),,否則.依據(jù)定義證明即可.【詳解】(1)首先,單元素?cái)?shù)集的離距

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論