




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
STUDY
AIASGAMECHANGER
TheNewDrivingForceoftheAutomotiveIndustry
Authors&Contactperson
Lead
AugustinFriedel
SoftwareDefinedVehiclesAugustin.Friedel@
Lead
MatthiasBorch
ArtificialIntelligenceMatthias.Borch@
ContactPerson
StephanBaier
ArtificialIntelligenceStephan.Baier@
Author
MarcusWilland
Mobility
Marcus.Willand@
Author
Dr.NilsSchaupensteiner
TransformationAdvisory
Nils.Schaupensteiner@
Author
PatrickRuhland
TransformationAdvisory
Patrick.Ruhland@
AIasGameChanger
Thestudy“AIasGameChanger“anditssummarywerepublishedby:
MHPGesellschaftfürManagement-undIT-BeratungmbH
Allrightsreserved!
Noreproduction,microfilming,storage,orprocessinginelectronicmediapermittedwithouttheconsentofthepublisher.Thecontentsofthispublicationareintendedtoinformourcustomersandbusinesspartners.Theycorrespondtothestateofknowledgeoftheauthorsatthetimeofpublication.Toresolveanyissues,pleaserefertothesourceslistedinthepublicationorcontactthedesignatedcontactpersons.Opinionarticlesreflecttheviewsoftheindividualauthors.Roundingdifferencesmayoccurinthegraphics.
3
4
Contents
Contents4
Tableoffigures6
12KeyFindings8
WelcometoChange!10
01.RevolutionandAutomotiveMarketPotential11
02.InvestmentinCompaniesWithanAIFocus15
03.PilotProjectsandImplementation19
04.AIModels,Levels,andUseCases23
4.1TheGameChanger:WhatCanBeAchievedWithAI26
4.2AutomobileManufacturersWithLowAIInvestment29
4.3AIModels:MakeorBuy?29
05.AIApplicationsAlongtheAutomotiveValueChain31
5.1AIOperationinVehiclesandintheCloud35
5.2AIMonetizationinVehicles39
5.3AddedValueofAIApplicationsinCompanies40
06.WhattheCustomerWants:TheUserPerspective47
6.1UseandUnderstandingofAIApplications49
6.2AdvantagesandDisadvantages–GenerallyandinVehicles49
6.3PurchasingDecision,TrustandWillingness
toPay51
AIasGameChanger|Contents
07.SuccessFactorsandStrategicApproach55
7.1StrategyandGoalPlanning56
7.2ThinkfromthePerspectiveoftheCustomer,nottheTechnology56
7.3OrganizationalAnchoringandOwnership58
7.4LocalDifferencesrequirelocalSetup59
7.5ReducingComplexity59
7.6Useand
MonetizationofData60
7.7ChecklistforsuccessfulImplementation61
08.Challenges,Responsibility,andRisks63
8.1CostsofTraining
andOperation64
8.2Dataand
DigitalizationasaBasis65
8.3BusinessModelsandCasesforB2CandB2B65
8.4EthicsandResponsibility67
8.5NewRisksandRegulatoryChallenges69
09.AIApplicationsintheAutomotiveIndustry:7RecommendationsforAction71
10.FurtherInformations75
LiteratureandSources76
Contact
International78
About
MHP79
5
6
Tableoffigures
Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift
(Coatue,2024)12
Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)12
Figure3:TotalinvestmentsinAIcompaniesfoundedsince2001,inUSDbillion(Scheuer,2024)16
Figure4:InvestmentinAIstacklayers(Coatue,2024)17
Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023)21
Figure6:InterconnectedAIconcepts24
Figure7:VisualizationofAIasapyramid25
Figure8:ClassificationofAIterms27
Figure9:TheperformanceofAImodelscomparedtohumancapabilitiesintheMMLUtest(iAsk,2024)28
Figure10:SchematicdiagramofthetrainingofAIfoundationmodelsforvehicles30
Figure11:UseofAIalongthevaluechain32
Figure12:SignificantimprovementsoffunctionsandfeaturesthroughAI33
Figure13:InterestinAIfunctionscomparedinternationally34
Figure14:Roleofon-premise,cloud,andvehicleforAImodels35
Figure15:Levelsofasoftware-definedvehicle(SDV)(Willand,Friedel,&Schaupensteiner,2023)36
Figure16:DifferentmodelsforADASandADapplicationsandfunctions37
Figure17:AI’spotentialatdifferentstagesofthevaluechain
(Capgemini,2023)40
Figure18:UseofAI-basedsolutionsbyregion41
Figure19:KeydriversbehindtheuseofAIinproduction42
7
AIasGameChanger|Tableoffigures
Figure20:Decisiveissue–fewerusersofsoftwareduetoAIorfreesoftware(Coatue,2024)43
Figure21:PossibleusesofAIinsoftwaredevelopment
(Wee2024)44
Figure22:UnderstandingofAIincars48
Figure23:AdvantagesofusingAIincars49
Figure
24:TheperceivedadvantagesanddisadvantagesofusingAI50
Figure
25:AIincars:purchasemotivationorblocker?51
Figure26:TrustinstakeholderswithregardtotheimplementationofAIinvehicles52
Figure27:WillingnesstopayforAIfunctions52
Abb.28:AssessmentofthefutureAIcompetenceofcarmanufacturersbyregion53
Figure
29:Customerandusecasefirst,andthenAIapplicationsandmodels57
Figure30:Dimensionsforvalidatingtechnicalfeasibility57
Figure31:TrainingcostsforAImodelsareincreasing(StanfordUniversity,2024)64
Figure32:Dataavailabilityandqualitybyregion65
Figure33:Customers’willingnesstopayisunclear;costsariseforimplementationandoperation66
Figure
34:ClassificationofAIusecasecategoriesandpossiblebusinessmodels67
Figure35:RisksassociatedwiththeuseofAI68
Figure
36:PrinciplesandpenaltiesoftheEUAIAct70
Table1:ThedevelopmentofAImodelsdividedintodifferenttimephases27
12KeyFindings
ThewidespreaduseofAIispredictedtobethenextrelevantplatformshiftaftercloudtransformation–originalequipmentmanufacturers(OEMs)needtostepuptheiractivities.
Morethan
Only
ofrespondentsseetime-savingasthebiggestbenefitofAIapplications.
SkepticismaboutAI
applicationsisgreaterin
theUSthaninEurope
orChina.
ofrespondentsinChinastatethattherisksofAI
outweighthebenefits;thisfigureisaround25percentinEuropeandtheUS.
Themostfrequentlymentioneddisadvantagesof
AIarefearoflossofcontrol,lossofdataprotectionandpersonalprivacy,andsecurityrisks.
8
CustomersworldwidewanttouseAIincars,butrarelypayforit.
InChina,morethantwiceasmanycustomershavealreadyusedAIintheircarsasin
Europe.
KI
InChina,AIfunctionsmostlyhaveapositive
influenceoncar
purchasing
decisions–only
ofrespondents
wouldnotbuy
avehiclebasedonAIfunctions.
TraditionalcarmanufacturersarethemosttrustedwhenitcomestotheuseofAI,far
aheadofstateinstitutionsandnewcarmanufacturers.
Today,Chinesecar
manufacturersareregardedasleadersinAIinnovation.Infiveyears’time,JapaneseOEMswillbeattheforefront,followedbyChineseandGermanOEMs.
AIisnotonlyrevolutionizingthein-vehiclecustomerexperience–theentirevaluechainis
experiencingdisruptivechange.
SuccessfulimplementationofAIapplicationsisnotpossiblewithoutpriordigitalizationandaccesstospecificdatasources.
AIasGameChanger|12KeyFindings
9
10
WelcometoChange!
Dearreaders,
Artificialintelligencewillbethenextplatformshiftthatrevolutionizesallindustrialsectors.StakeholdersintheautomotivevaluechainhaverealizedthatAIischallengingmanytradi-tionalprocessesandwaysofthinking.TheintroductionofthePC,thestationaryInternetandthenthemobileInternet,andCloud/SaaSpreviouslyhadasimilarlydisruptiveimpact.Newbusinessmodelsandprofitpoolsareemerging,whileatthesametimetherearenu-merouschallengestobetackledwithregardtotechnology,partnerships,andethicalissues.Inthisstudy,wetracethegroundbreakingdevelopmentsinAIsofarandexaminetheop-portunitiesandriskswithintheautomotiveindustry.Accompanyusthroughpresentandfuturescenarios–withspecificrecommendationsforactionforyourownstrategywhenitcomestoimplementingAIapplicationsinproductionandinvehicles.
Whetherthenewtechnologiesmeettheexpectationsofdriversisdeterminedrightthereinthecockpit.That’swhy,inChapter8,weoutlinetheuserperspectivebasedonourowncurrentdata.OurinternationalsurveyprovidesinformationaboutwhichproductsandservicesfromautomotivecompaniescouldfulfillAIneedsandwhatthewillingnesstopaylookslike.Thatmakesthisstudyessentialreadingfordecision-makers,CIOs,andapplica-tiondevelopers.
InvestorsinAItechnologiesandAIteamsneedaconsistent,long-termcost-benefitratio.Wethereforeexaminethedirect/indirectmonetizationofin-carAIandlookatnewbusinessmodelsbasedonAIanddigitalization.
Ultimately,asissooftenthecase,itbecomesclearthatthejourneyintonewtechnologicalterritoryisbestundertakenwithexperiencedtravelguides.Gettheknow-howyouneed–andalwaysbecurious!
ENABLINGYOUTOSHAPEABETTERTOMORROW
Bestregards,
Dr.JanWehinger
ClusterLeadSoftwareDefinedVehicles
MHPManagement-undIT-BeratungGmbHLudwigsburg,September2024
AIasGameChanger|01.RevolutionandAutomotiveMarketPotential
01.
Revolutionand
AutomotiveMarketPotential
11
EveryonerecognizesthatAIisthenextplatformshift
Mobile Internet(Web2.0)
Cloud/SaaS
GenerativeAI
Desktop Internet(Web1.0)
Networking
PC
Mainframe
1960–19801980s1990s2000s2010s2015–20202022–...
Figure1:Technologysupercycles–artificialintelligenceasthenextrelevantplatformshift(Coatue,2024)
AI-Basedsystemsforautomotiveindustrytoreach
US$35.7billionby2033
35.7
26.6
20.0
...inbillionUS$
15.2
11.7
9.2
5.8
7.3
3.9
4.7
3.2
20232024202520262027202820292030203120322033
Figure2:AImarketsizeintheautomotivesector(PrecedenceResearch,2024)
12
ItishighlylikelythatthebigtechnologycompaniessuchasGoogle,Meta,andMicrosoft–whichgainedinimportancewiththelastplatformshifts(supercy-cles)–willalsodominatetheAIage.
Alongtheautomotivevaluechain,stakeholdersaresometimesaccusedofhavingrespondedtothelastplatformshiftstoolateorwithanineffectivestrategy.Inouropinion,therelevanceofconnectivityandcloudsolutionswasrecognizedtoolateandimplementationcouldhavebeenbetter.Theindustryisatthebegin-ningoftheAIplatformshiftandthereisstilltheop-portunitytorespondearlywithatargetedstrategy.CompanieslikeApplehaveshownthatitisnotneces-
Onefear,however,isthatartificialintelligencewillincreasinglyreplacepeopleandjobsmaydisappear.Currently,AIapplicationsareregardedmoreasacom-plementratherthanareplacement.AcademicssuchasKarimLakhanifromHarvardBusinessSchoolbelievethatAIwillnotreplacehumans.OnepossiblescenarioisthatpeoplewhouseAIwillhaveasignificantadvan-tageoverworkerswhodonotuseit.
RegardingthequestionofwhetherAIwillimprovetheeconomy,asurveyshowsamixedpicture.Worldwide,34percentofrespondentsbelievethattheuseofAIwillimprovetheeconomicsituationintheircountryinthenextthreetofiveyears.Thishopeisaboveaverage
“AIWon’tReplaceHumans—
ButHumansWithAIWillReplaceHumansWithoutAI.”(HBR,2023)
sarytobethefirstinnovator.WithastrongAIstrategy,acompanycanalsoexploitpotentialasafastfollower.Themarketforartificialintelligenceintheautomotiveindustryhasshownremarkablegrowthinrecentyears.ItiscurrentlyestimatedtobearoundUSD3.9billionin2024andisexpectedtogrowtoUSD15billionby2030.SomemarketanalysesanticipatethatAIsalesintheautomotivesectorwillrisetooverUSD35billionin2033.Growthfrom2024to2033correspondstoarateof28percent.
Estimatesinothermarketreportsmaybeslightlyhigh-erorlower,butallshowthesametrend.Thismeansthatextensiveeconomicopportunitiesarebeingcreat-edalongthevaluechainformanufacturers,suppliers,andserviceproviders.
incountriessuchasThailand,India,andSouthAfrica.Atthelowerendoftherankingarecountriesinclud-ingBelgium,Japan,theUS,andFrance(Ipsos,2023).Overall,thereareincreasingsignsthattherearefarmoreopportunitiesthanrisks.Thetargeteduseofarti-ficialintelligencewillsignificantlyaffectourprosperityinthecomingdecades.AIboostsefficiencyandcancounterthenegativeeffectsofskillsshortages,demo-graphicchanges,andhighlocationcosts.Itisnowuptotheautomotiveindustrytotakeboldandappropri-atelyfastaction–andfollowastrategicallyintelligentapproach.
AIasGameChanger|01RevolutionandAutomotiveMarketPotential
13
14
AIasGameChanger|02.InvestmentinCompaniesWithanAIFocus
02.
Investmentin
CompaniesWithanAIFocus
15
16
Magnetforinvestment:TotalinvestmentinAIcompaniesfoundedsince2001inbillionsofUSdollars
16.5bn.US$GreatBritain
4.6bn.US$WashingtonDC
5.0bn.US$Germany
29.2bn.US$NewYork
6.1bn.US$France
16.6bn.US$Boston
★★★
★★
★★
★★
★★★
39.6
Bn.US$
8.4bn.US$
Diego
10.2bn.US$LosAngeles
5.3bn.US$San
Dallas
234.1
Bn.US$
101.2
bn.US$
55.8bn.US$SanFrancisco
7bn.US$Seattle
41.7
bn.US$SiliconValley
Figure3:TotalinvestmentsinAIcompaniesfoundedsince2001,inUSDbillion(Scheuer,2024)
AlookatthedistributionofAIinvestmentshowsthedominanceofthoseregionsthatalsodominatedthemarketinthelastplatformshifts(seeCoatue,2024;Figure1).Itcanbeassumedthattheautomotivein-dustrywillcontinuetobedependentonhyperscalersandtechnologycompanies.Collaborationsregardingsoftware,cloudapplications,andtheuseofAIareex-pectedtoincrease.
AnanalysisshowsthatalargeshareoftheinvestmentinAIcompaniescomesfromtheUS.Acloserlook(Coatue,2024)showsthatonlyapprox.3percentoftheventurecapitaldealshaveaclearlinktoAI,butthat15percentoftheinvestedcapitalflowsintoAIstart-ups.Fromthisimbalance,itcanbeconcluded
thatthemarketseesrelativelyhighvaluationsandcorrespondinglyhighinvestmentrounds.Thefinanc-ingroundsshowthatmostoftheinvestmentsin2024wentintocompaniesthatdevelopAImodelssuchasChatGPT,Mistral,andClaude.AtotalofUSD14bil-lionwasinvestedinAImodelsinthefirsthalfoftheyear.Thisequatesto62percent.
In2024,asmallerproportionofthecapitalinvestedinAIcompanieswentintofirmsthatdevelopsemicon-ductorsforAIapplications.Roboticsapplications,suchashumanoidrobots,garneredapprox.USD2billionincapital,whichcorrespondstoaround9percentofthetotal.
17
AmongthelargestinvestorsintheAIfieldarethemajortechnologycompaniesincludingMicrosoft,Amazon,NVIDIA,andAlphabet(Google’sholdingcompany).In2023,thesecompaniesinvestedaroundUSD25billionandwerethusresponsiblefor8percentofinvestment.
Carmanufacturers’investmentsincompaniesthatdealwithartificialintelligencearemoremodest.Belowaresomeexamples:
InvestmentsbyNIOCapital
Momenta:Start-upwithafocusonautonomousdriv-ingandonthedevelopmentoftechnologiesforenvi-ronmentalperceptionandhigh-precisionmapping
Pony.ai:Companyfocusingonautonomousdriving;itformspartnershipstodevelopmobilitysolutions
BlackSesameTechnologies:CompanyspecializinginAIchipsandsystems
InvestmentsbyBMWiVentures
Alitheon:SpecializesinopticalAItechnologyforob-jectidentificationandauthenticationwithFeaturePrinttechnology
Recogni:Focusesonhigh-performanceAIprocessingwithlowpowerconsumptionforautonomousvehicles
AutoBrains:DevelopsAIsolutionsfortheautomotiveindustry,particularlyinthefieldofautonomousdriv-ingtechnologies
InvestmentsbyPorsche
Sensigo:DeveloperofanAI-supportedplatformforoptimizingvehiclediagnosticsandrepairprocesses
Waabi:CanadiandeveloperofAI-basedsolutionsforself-drivingtrucks
AppliedIntuition:Providessoftwaresolutionsforthedevelopmentofdriverassistancesystemsandauton-omousdriving
Cresta:Specializesinreal-timeintelligenceforcustom-erinteractionsandcommunicationsolutions
WhereareAIVCdollarsgoing?
Funding~$14B~$4B~$2B~$2B~$100M
100
80
60
40
20
0
62%
AIModels
20%
AIApps
9%
AIOps/AICloud
9%
AIRobotics
<1%
AISemis
AIasGameChanger|02InvestmentinCompaniesWithanAIFocus
Figure4:InvestmentinAIstacklayers(Coatue,2024)
18
AIasGameChanger|03.PilotProjectsandImplementation
03.
PilotProjectsandImplementation
19
20
Without
comprehensivepriordigitalization,the
implementationof
AIapplicationswill
beaninsurmountablechallenge.Car
manufacturersandsuppliersshould
allocatebudgetsforAIandbuildup
expertisepromptly.
21
Intheautomotiveindustry,amixedpictureisemergingwithregardtotheacceptanceandimplementationofAIapplicationsalongthevaluechain.Thelevelofim-plementationislowamongsuppliersanddealersandinafter-salesservices.Automobilemanufacturershavemadefurtherprogressintermsofimplementation,butthereissignificantpotentialforimprovementhere.
Lookingattheautomotiveindustryasawhole,only4percentofcompanieshavebeguntoimplementAIapplicationsatselectedlocations.Thatisaroundhalfasmuchasinthepharmaceuticalindustry.Inretail,thefigureisfourtimeshigher.Some28percentofcompaniesintheautomotivevaluechainareworkingonAIpilotprojects,andthevastmajority(68percent)arestillatexplorationstage(CapgeminiResearchIn-stitute,2023).
Only30percentofthecompaniesintheautomotivesectorhaveadedicatedteamandanextrabudgetfortheintroductionandimplementationofAIprojects.Bycomparison,therateis62percentinretail,74percentinthehigh-techsector,and52percentinaerospace/defense.(Capgemini,2023)
Interimconclusion:Theautomotiveindustry’sinvest-mentinAIhasbeenbelowaveragetodate;thisaffectsbudgetsandspecializedteams.GiventhehugeimpactofAIontheindustry,itisadvisabletorectifythissitua-tionquickly.
ProportionofcompanieswithadedicatedteamandbudgetforAI
A
e
g
a
r
62%
ve
52%
36%
30%
40%
74%
CarHighTech
manufacturing
RetailAerospace/
defense
Tele-
communi-
cations
AIasGameChanger|03PilotProjectsandImplementation
Figure5:CompanieswithteamandbudgetforAI(Capgemini,2023)
22
AIasGameChanger|04.AIModels,Levels,andUseCases
04.
AIModels,Levels,andUseCases
23
24
Interconnected
AIconcepts
Eachconceptisaspecializedpart
oftheoneprecedingit.
Figure6:InterconnectedAIconcepts
AIcoversawidefieldthatcanbedividedintoseveralareasandtermsusingahierarchicaldiagram:
ArtificialIntelligence(AI):Researchareafocusingonthecreationofintelligentmachines.
Machinelearning(ML):BranchofAIfocusingonthedevelopmentofmachinesthatcanlearnfromdata.
Deeplearning:Asub-categoryofmachinelearn-ingbasedonartificialneuralnetworks.Examplesareconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs).
GenerativeAI:Aspecialtypeofartificialneuralnet-worksthatgeneratedatasimilartothetrainingdata.Examplesaregenerativeadversarialnetworks(GANs)andlargelanguagemodels(LLMs).
WithAIapplications,variouscategoriesofusecasescanbeimplemented:
Datamanagement:Thisinvolvesharmonizingdataandobtainingfindings.Itisessentialforthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生產安全管理在紡織中的實踐試題及答案
- 助理廣告師企業社會責任實踐試題及答案
- 新聞評論歷年試題及答案
- 掌握紡織質量控制流程試題及答案
- 2024年紡織工程師新型染整工藝試題及答案
- 加強返貧防范與低收入群體扶持的行動方案
- 供熱管網與設施升級改造方案實施
- 大模型在醫療領域的倫理治理與實踐路徑
- 2024年紡織行業環保措施的研究試題及答案
- 紡織品設計與社會責任考題及答案
- 綠植租擺服務投標方案(技術方案)
- 安全生產責任制培訓課件
- 長安悅翔驅動橋設計與有限元分析
- JTG C10-2007 公路勘測規范
- 銀行卡租用協議合集3篇
- 合歡花提取物的鎮靜和催眠作用
- (高清版)DZT 0216-2020 煤層氣儲量估算規范
- 《養老護理員》-課件:職業安全和個人防護知識
- 蘇爾壽泵HSB中文手冊樣本
- 最高人民法院民法典總則編司法解釋理解與適用
- 雅思托福培訓班合作協議
評論
0/150
提交評論