




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
肇慶市高中畢業班2025屆高三第三次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數有且僅有一個零點,則實數的值為()A. B. C. D.2.若,則,,,的大小關系為()A. B.C. D.3.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或4.雙曲線x2a2A.y=±2x B.y=±3x5.已知展開式的二項式系數和與展開式中常數項相等,則項系數為()A.10 B.32 C.40 D.806.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.7.函數的圖象大致為()A. B.C. D.8.在復平面內,復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知復數是純虛數,其中是實數,則等于()A. B. C. D.10.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.11.已知集合,,若,則()A. B. C. D.12.設全集,集合,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在四面體中,分別是的中點.則下述結論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結論的編號)14.已知函數為偶函數,則_____.15.已知均為非負實數,且,則的取值范圍為______.16.已知,如果函數有三個零點,則實數的取值范圍是____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合..(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.18.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)若射線的極坐標方程為().設與相交于點,與相交于點,求.19.(12分)已知拋物線:的焦點為,過上一點()作兩條傾斜角互補的直線分別與交于,兩點,(1)證明:直線的斜率是-1;(2)若,,成等比數列,求直線的方程.20.(12分)P是圓上的動點,P點在x軸上的射影是D,點M滿足.(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.21.(12分)設函數.(1)求不等式的解集;(2)若的最小值為,且,求的最小值.22.(10分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經濟損失達52億元.某青年志愿者組織調查了某地區的50個農戶在該次臺風中造成的直接經濟損失,將收集的數據分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據頻率分布直方圖估計該地區每個農戶的平均損失(同一組中的數據用該組區間的中點值代表);(2)臺風后該青年志愿者與當地政府向社會發出倡議,為該地區的農戶捐款幫扶,現從這50戶并且損失超過4000元的農戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農戶數為,求的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現,不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.2、D【解析】因為,所以,因為,,所以,.綜上;故選D.3、A【解析】
根據題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:
①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.
故選:A.【點睛】本小題主要考查直線與圓的位置關系、雙曲線的簡單性質等基礎知識,考查運算求解能力,考查數形結合思想.解題的關鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.4、A【解析】分析:根據離心率得a,c關系,進而得a,b關系,再根據雙曲線方程求漸近線方程,得結果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a25、D【解析】
根據二項式定理通項公式可得常數項,然后二項式系數和,可得,最后依據,可得結果.【詳解】由題可知:當時,常數項為又展開式的二項式系數和為由所以當時,所以項系數為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.6、D【解析】
先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.7、A【解析】
用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.8、B【解析】
化簡復數為的形式,然后判斷復數的對應點所在象限,即可求得答案.【詳解】對應的點的坐標為在第二象限故選:B.【點睛】本題主要考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.9、A【解析】
對復數進行化簡,由于為純虛數,則化簡后的復數形式中,實部為0,得到的值,從而得到復數.【詳解】因為為純虛數,所以,得所以.故選A項【點睛】本題考查復數的四則運算,純虛數的概念,屬于簡單題.10、A【解析】
根據題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點睛】本題考查了常見幾何體的三視圖和體積計算,屬于基礎題.11、A【解析】
由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點睛】本題考查了集合交集的含義,也考查了元素與集合的關系,屬于基礎題.12、A【解析】
先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①③④.【解析】
補圖成長方體,在長方體中利用割補法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計算截面面積的最值.【詳解】根據四面體特征,可以補圖成長方體設其邊長為,,解得補成長,寬,高分別為的長方體,在長方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價于邊長為的矩形的對角線夾角正弦值,可得正弦值為,故錯;③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點睛】此題考查根據幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關鍵在于熟練掌握點線面位置關系的處理方法,補圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補圖方法.14、【解析】
根據偶函數的定義列方程,化簡求得的值.【詳解】由于為偶函數,所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據函數的奇偶性求參數,考查運算求解能力,屬于中檔題.15、【解析】
設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數的最值即可求解.【詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數的對稱軸為,所以當時函數有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數的對稱軸為,所以當時,函數有最小值為,即,當,且時取等號,所以.故答案為:【點睛】本題考查基本不等式與二次函數求最值相結合求代數式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.16、【解析】
首先把零點問題轉化為方程問題,等價于有三個零點,兩側開方,可得,即有三個零點,再運用函數的單調性結合最值即可求出參數的取值范圍.【詳解】若函數有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數單調遞增,,,所以函數在區間上只有一解,對于函數,,解得,,解得,,解得,所以函數在區間上單調遞減,在區間上單調遞增,,當時,,當時,,此時函數若有兩個零點,則有,綜上可知,若函數有三個零點,則實數的取值范圍是.故答案為:【點睛】本題考查了函數零點的零點,恰當的開方,轉化為函數有零點問題,注意恰有三個零點條件的應用,根據函數的最值求解參數的范圍,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)存在,為中點【解析】
(1)證明面,即證明平面平面;(2)以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系.利用向量方法得,解得,所以為中點.【詳解】(1)由于為中點,.又,故,所以為直角三角形且,即.又因為面,面面,面面,故面,又面,所以面面.(2)由(1)知面,又四邊形為矩形,則兩兩垂直.以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系.則,設,則,設平面的法向量為,則有,令,則,則平面的一個法向量為,同理可得平面的一個法向量為,設平面與平面所成角為,則由題意可得,解得,所以點為中點.【點睛】本題主要考查空間幾何位置關系的證明,考查空間二面角的應用,意在考查學生對這些知識的理解掌握水平.18、(1)曲線的普通方程為;直線的直角坐標方程為(2)【解析】
(1)利用消去參數,將曲線的參數方程化成普通方程,利用互化公式,將直線的極坐標方程化為直角坐標方程;(2)根據(1)求出曲線的極坐標方程,分別聯立射線與曲線以及射線與直線的極坐標方程,求出和,即可求出.【詳解】解:(1)因為(為參數),所以消去參數,得,所以曲線的普通方程為.因為所以直線的直角坐標方程為.(2)曲線的極坐標方程為.設的極徑分別為和,將()代入,解得,將()代入,解得.故.【點睛】本題考查利用消參法將參數方程化成普通方程以及利用互化公式將極坐標方程化為直角坐標方程,還考查極徑的運用和兩點間距離,屬于中檔題.19、(1)見解析;(2)【解析】
(1)設,,由已知,得,代入中即可;(2)利用拋物線的定義將轉化為,再利用韋達定理計算.【詳解】(1)在拋物線上,∴,設,,由題可知,,∴,∴,∴,∴,∴(2)由(1)問可設::,則,,,∴,∴,即(*),將直線與拋物線聯立,可得:,所以,代入(*)式,可得滿足,∴:.【點睛】本題考查直線與拋物線的位置關系的應用,在處理直線與拋物線位置關系的問題時,通常要涉及韋達定理來求解,本題查學生的運算求解能力,是一道中檔題.20、(1)點M的軌跡C的方程為,軌跡C是以,為焦點,長軸長為4的橢圓(2)【解析】
(1)設,根據可求得,代入圓的方程可得所求軌跡方程;根據軌跡方程可知軌跡是以,為焦點,長軸長為的橢圓;(2)設,與橢圓方程聯立,利用求得;利用韋達定理表示出與,根據平行四邊形和向量的坐標運算求得,消去后得到軌跡方程;根據求得的取值范圍,進而得到最終結果.【詳解】(1)設,則由知:點在圓上點的軌跡的方程為:軌跡是以,為焦點,長軸長為的橢圓(2)設,由題意知的斜率存在設,代入得:則,解得:設,,則四邊形為平行四邊形又∴,消去得:頂點的軌跡方程為【點睛】本題考查圓錐曲線中的軌跡方程的求解問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高科技金融服務創新合作協議
- 2025-2030年中國自動切換鈉離子交換器行業深度研究分析報告
- 2025年氯苯甘油醚項目投資可行性研究分析報告
- 2025-2030年中國鐵條沙袋行業深度研究分析報告
- 2025-2030年中國散裝水泥筒的行業深度研究分析報告
- 2025-2030年中國避雷進戶線行業深度研究分析報告
- 2025年蘭索拉唑腸溶膠囊行業深度研究分析報告
- 2025年男女上衣項目投資可行性研究分析報告
- 2025年藝術學研究與試驗發展行業深度研究分析報告
- 2025-2030年中國金屬冷沖件項目投資可行性研究分析報告
- 河南省濮陽市清豐縣2023-2024學年八年級上學期期中生物試題( 含答案解析 )
- 30道智能駕駛工程師崗位常見面試問題含HR問題考察點及參考回答
- 護林員勞務派遣投標方案(技術標)
- 住院患者轉科交接登記本
- 說課-青霉素皮試液的配置
- 北師大版小學英語3-6年級單詞-(三起)帶音標-精華版
- 無違法犯罪記錄證明申請表(個人)
- 公共衛生概論課件
- 菌種計數記錄
- 農村垃圾清運投標方案
- 涉密計算機安全策略
評論
0/150
提交評論