人教版高二上學期數學(選擇性必修1)《1.5集合的基本運算》同步測試題含答案_第1頁
人教版高二上學期數學(選擇性必修1)《1.5集合的基本運算》同步測試題含答案_第2頁
人教版高二上學期數學(選擇性必修1)《1.5集合的基本運算》同步測試題含答案_第3頁
人教版高二上學期數學(選擇性必修1)《1.5集合的基本運算》同步測試題含答案_第4頁
人教版高二上學期數學(選擇性必修1)《1.5集合的基本運算》同步測試題含答案_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第第頁人教版高二上學期數學(選擇性必修1)《1.5集合的基本運算》同步測試題含答案考試時間:60分鐘;滿分:100分學校:___________班級:___________姓名:___________考號:___________1.并集的概念及表示2.交集的概念及表示溫馨提示:(1)兩個集合的并集、交集還是一個集合.(2)對于A∪B,不能認為是由A的所有元素和B的所有元素所組成的集合.因為A與B可能有公共元素,每一個公共元素只能算一個元素.(3)A∩B是由A與B的所有公共元素組成,而非部分元素組成.3.并集、交集的運算性質4.全集(1)定義:如果一個集合含有我們所研究問題中涉及的所有元素,那么就稱這個集合為全集.(2)符號表示:全集通常記作U.5.補集溫馨提示:?UA的三層含義:(1)?UA表示一個集合;(2)A是U的子集,即A?U;(3)?UA是U中不屬于A的所有元素組成的集合.【題型1并集的運算】【方法點撥】①定義法:若是用列舉法表示的數集,可以根據并集的定義直接觀察或用Venn圖表示出集合運算的結果.②數形結合法:若是用描述法表示的數集,可借助數軸分析寫出結果,此時要注意當端點不在集合中時,應用“空心點”表示.【例1】(2022?河南模擬)已知集合A={x|﹣2<x<3},集合B={x|1﹣x>﹣1},則集合A∪B=()A.(2,3) B.(﹣2,2) C.(﹣2,+∞) D.(﹣∞,3)【變式1-1】(2022?東城區校級三模)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},則A∪B=()A.{x|0≤x<1} B.{x|﹣1<x≤2} C.{x|1<x≤2} D.{x|0<x<1}【變式1-2】(2022春?樂清市校級期中)設集合A={2,3},B={x|2<x<4},則A∪B=()A.{3} B.{2,3} C.(2,3) D.[2,4)【變式1-3】(2022春?平羅縣校級期中)已知集合M={x|﹣1<x<1},N={x|0<x<2},則M∪N等于()A.(0,1) B.(?1,2) C【題型2交集的運算】【方法點撥】①求兩集合的交集時,首先要化簡集合,使集合的元素特征盡量明朗化,然后根據交集的含義寫出結果.②在求與不等式有關的集合的交集運算中,應重點考慮數軸分析法,直觀清晰.【例2】(2022?金東區校級模擬)設集合A={x|x≥2},B={x|﹣1<x<3},則A∩B=()A.{x|x≥2} B.{x|x<2} C.{x|2≤x<3} D.{x|﹣1≤x<2}【變式2-1】(2022?金鳳區校級三模)已知集合A={x|1<x﹣1≤3},B={2,3,4},則A∩B=()A.{2,3,4} B.{3,4} C.{2,4} D.{2,3}【變式2-2】(2022?浙江學業考試)已知集合P={0,1,2},Q={1,2,3},則P∩Q=()A.{0} B.{0,3} C.{1,2} D.{0,1,2,3}【變式2-3】(2022?巴宜區校級二模)集合A={x∈Z|x<2},B={﹣1,0,1,2,3},則A∩B=()A.{﹣1,0,1,2} B.{﹣1,0,1} C.{0,1} D.{1}【題型3由集合的并集、交集求參數】【方法點撥】①策略:當題目中含有條件A∩B=A或A∪B=B,解答時常借助于交集、并集的定義及集合間的關系去分析,將A∩B=A轉化為A?B,A∪B=B轉化為A?B.②方法:借助數軸解決,首先根據集合間的關系畫出數軸,然后根據數軸列出關于參數的不等式(組),求解即可,特別要注意端點值的取舍.③注意點:當題目條件中出現B?A時,若集合B不確定,解答時要注意討論B=?的情況.【例3】(2021秋?宜賓期末)已知集合A={x|2<x<4},B={x|a﹣1≤x≤2a+1,a∈R}.(1)若a=1,求A∪B;(2)若A∩B=A,求實數a的取值范圍.【變式3-1】(2021秋?資陽期末)已知全集U=R,集合A={x|2a+1<x<2a+6},B={x|﹣4≤x≤2}.(1)若a=﹣1,求A∪B;(2)若A∩B≠?,求實數a的取值范圍.【變式3-2】(2021秋?伊州區校級期末)若集合A={x|2x﹣1?3},B={x|3x﹣2<m},C={x|x<5,x∈N}.(1)求A∩C;(2)若A∪B=R,求實數m的取值范圍.【變式3-3】(2021秋?黑龍江期末)已知集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1}.(1)當用m=5時,求A∩B,A∪B;(2)若A∪B=A,求實數m的取值范圍.【題型4補集的運算】【方法點撥】①當集合用列舉法表示時,可借助Venn圖求解;②當集合是用描述法表示的連續數集時,可借助數軸,利用數軸分析求解.【例4】(2022?沈陽模擬)已知全集U={x∈N|﹣1<x≤3},A={1,2},?UA=()A.{3} B.{0,3} C.{﹣1,3} D.{﹣1,0,3}【變式4-1】(2022?林州市校級開學)已知全集A={x|1≤x≤6},集合B={x|1<x<5},則?AB=()A.{x|x≥5} B.{x|5<x≤6或x=1} C.{x|x≤1或x≥5} D.{x|5≤x≤6}∪{1}【變式4-2】(2022?乙卷)設全集U={1,2,3,4,5},集合M滿足?UM={1,3},則()A.2∈M B.3∈M C.4?M D.5?M【變式4-3】(2022?北京)已知全集U={x|﹣3<x<3},集合A={x|﹣2<x≤1},則?UA=()A.(﹣2,1] B.(﹣3,﹣2)∪[1,3) C.[﹣2,1) D.(﹣3,﹣2]∪(1,3)【題型5交集、并集、補集的綜合運算】【方法點撥】①如果所給集合是有限集,則先把集合中的元素一一列舉出來,然后結合交集、并集、補集的定義來求解.在解答過程中常常借助于Venn圖來求解.②如果所給集合是無限集,則常借助數軸,把已知集合及全集分別表示在數軸上,然后進行交、并、補集的運算.解答過程中要注意邊界問題.【例5】(2022?臨沂三模)已知集合A=N,B={x|x≥3},A∩(?RB)=()A.{﹣1,0} B.{1,2} C.{﹣1,0,1} D.{0,1,2}【變式5-1】(2022?柯橋區模擬)已知集合A={x∈R|x≤0},B={x∈R|﹣1≤x≤1},則?R(A∪B)=()A.(﹣∞,0) B.[﹣1,0] C.[0,1] D.(1,+∞)【變式5-2】(2022?大通縣三模)已知全集U={﹣1,0,1,2,3,4},集合A={x|x≤2,x∈N},B={﹣1,0,1,2},則A∪(?UB)=()A.{0,1,2} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2,3,4}【變式5-3】(2022?義烏市模擬)已知全集U=R,集合P={x|﹣2<x<1},Q={x|x?0},則P∩(?UQ)=()A.(﹣2,0) B.(0,1) C.(﹣∞,0)∪(0,1) D.(﹣∞,1)【題型6利用集合間的關系求參數】【方法點撥】①與集合的交、并、補運算有關的求參數問題一般利用數軸求解,涉及集合間關系時不要忘掉空集的情況.②不等式中的等號在補集中能否取到,要引起重視,還要注意補集是全集的子集.【例6】(2021秋?沈陽期末)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},U=R.(1)若A∪?UB=U,求實數m的取值范圍;(2)若A∩B≠?,求實數m的取值范圍.【變式6-1】(2021秋?湖州期末)已知集合A={x|﹣3≤x≤2},B={x|2m﹣1≤x≤m+3}.(1)當m=0時,求?R(A∩B);(2)若A∪B=A,求實數m的取值范圍.【變式6-2】(2021秋?海東市期末)已知集合A={x|a<x<2a},B={x|x≤﹣4或x≥3}.(1)當a=2時,求A∪(?RB);(2)若A??RB,求a的取值范圍.【變式6-3】(2021秋?玉溪期末)已知集合A={x|a﹣1≤x≤a+1},B={x|x?5(1)若a=﹣3,求A∪B;(2)在①A∩B=?,②B∪(?RA)=R,③A∪B=B,這三個條件中任選一個作為已知條件,求實數a的取值范圍.參考答案【題型1并集的運算】【方法點撥】①定義法:若是用列舉法表示的數集,可以根據并集的定義直接觀察或用Venn圖表示出集合運算的結果.②數形結合法:若是用描述法表示的數集,可借助數軸分析寫出結果,此時要注意當端點不在集合中時,應用“空心點”表示.【例1】(2022?河南模擬)已知集合A={x|﹣2<x<3},集合B={x|1﹣x>﹣1},則集合A∪B=()A.(2,3) B.(﹣2,2) C.(﹣2,+∞) D.(﹣∞,3)【解題思路】求出集合B,由此能求出A∪B.【解答過程】解:集合A={x|﹣2<x<3},集合B={x|1﹣x>﹣1}={x|x<2},則A∪B={x|x<3}.故選:D.【變式1-1】(2022?東城區校級三模)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},則A∪B=()A.{x|0≤x<1} B.{x|﹣1<x≤2} C.{x|1<x≤2} D.{x|0<x<1}【解題思路】利用集合并集定義、不等式性質直接求解.【解答過程】解:∵集合A={x|﹣1<x<1},B={x|0≤x≤2},∴A∪B={x|﹣1<x≤2}.故選:B.【變式1-2】(2022春?樂清市校級期中)設集合A={2,3},B={x|2<x<4},則A∪B=()A.{3} B.{2,3} C.(2,3) D.[2,4)【解題思路】利用并集定義直接求解.【解答過程】解:∵集合A={2,3},B={x|2<x<4},∴A∪B={x|2≤x<4}.故選:D.【變式1-3】(2022春?平羅縣校級期中)已知集合M={x|﹣1<x<1},N={x|0<x<2},則M∪N等于()A.(0,1) B.(?1,2) C【解題思路】利用并集運算可求得答案.【解答過程】解:由集合M={x|﹣1<x<1},N={x|0<x<2},則M∪N={x|﹣1<x<1}∪{x|0<x<2}=(﹣1,2),故選:B.【題型2交集的運算】【方法點撥】①求兩集合的交集時,首先要化簡集合,使集合的元素特征盡量明朗化,然后根據交集的含義寫出結果.②在求與不等式有關的集合的交集運算中,應重點考慮數軸分析法,直觀清晰.【例2】(2022?金東區校級模擬)設集合A={x|x≥2},B={x|﹣1<x<3},則A∩B=()A.{x|x≥2} B.{x|x<2} C.{x|2≤x<3} D.{x|﹣1≤x<2}【解題思路】直接利用交集運算得答案.【解答過程】解:∵A={x|x≥2},B={x|﹣1<x<3},∴A∩B={x|x≥2}∩{x|﹣1<x<3}={x|2≤x<3}.故選:C.【變式2-1】(2022?金鳳區校級三模)已知集合A={x|1<x﹣1≤3},B={2,3,4},則A∩B=()A.{2,3,4} B.{3,4} C.{2,4} D.{2,3}【解題思路】求出集合A,利用交集定義能求出A∩B.【解答過程】解:∵集合A={x|1<x﹣1≤3}={x|2<x≤4},B={2,3,4},∴A∩B={3,4}.故選:B.【變式2-2】(2022?浙江學業考試)已知集合P={0,1,2},Q={1,2,3},則P∩Q=()A.{0} B.{0,3} C.{1,2} D.{0,1,2,3}【解題思路】由已知結合集合交集的運算即可求解.【解答過程】解:集合P={0,1,2},Q={1,2,3},則P∩Q={1,2}.故選:C.【變式2-3】(2022?巴宜區校級二模)集合A={x∈Z|x<2},B={﹣1,0,1,2,3},則A∩B=()A.{﹣1,0,1,2} B.{﹣1,0,1} C.{0,1} D.{1}【解題思路】進行交集的運算即可.【解答過程】解:∵A={x∈Z|x<2},B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1}.故選:B.【題型3由集合的并集、交集求參數】【方法點撥】①策略:當題目中含有條件A∩B=A或A∪B=B,解答時常借助于交集、并集的定義及集合間的關系去分析,將A∩B=A轉化為A?B,A∪B=B轉化為A?B.②方法:借助數軸解決,首先根據集合間的關系畫出數軸,然后根據數軸列出關于參數的不等式(組),求解即可,特別要注意端點值的取舍.③注意點:當題目條件中出現B?A時,若集合B不確定,解答時要注意討論B=?的情況.【例3】(2021秋?宜賓期末)已知集合A={x|2<x<4},B={x|a﹣1≤x≤2a+1,a∈R}.(1)若a=1,求A∪B;(2)若A∩B=A,求實數a的取值范圍.【解題思路】(1)求出集合B,并集定義能求出A∪B;(2)由A∩B=A,得A?B,列出不等式組,能求出實數a的取值范圍.【解答過程】解:(1)∵集合A={x|2<x<4},B={x|a﹣1≤x≤2a+1,a∈R}.當a=1時,B={x|0≤x≤3},∴A∪B={x|0≤x<4};(2)∵A∩B=A,∴A?B,∴a?1<∴實數a的取值范圍為[3【變式3-1】(2021秋?資陽期末)已知全集U=R,集合A={x|2a+1<x<2a+6},B={x|﹣4≤x≤2}.(1)若a=﹣1,求A∪B;(2)若A∩B≠?,求實數a的取值范圍.【解題思路】(1)把a=﹣1代入求得A,再由并集運算得答案;(2)由A∩B≠?,可得關于a的不等式組,求解得答案.【解答過程】解:(1)a=﹣1時,A={x|﹣1<x<4},又B={x|﹣4≤x≤2},∴A∪B={x|﹣4≤x<4};(2)若A∩B≠?,則2a+1<解得﹣5<a<12,故a的取值范圍是(﹣5,【變式3-2】(2021秋?伊州區校級期末)若集合A={x|2x﹣1?3},B={x|3x﹣2<m},C={x|x<5,x∈N}.(1)求A∩C;(2)若A∪B=R,求實數m的取值范圍.【解題思路】(1)先求出A與C,再根據集合的基本運算求解.(2)先求出集合B,再根據A∪B=R,得到不等式求解.【解答過程】解:(1)∵A={x|2x﹣1?3}={x|x?2},C={x|x<5,x∈N}={0,1,2,3,4},∴A∩C={2,3,4}.(2)∵B={x|3x﹣2<m}={x|x<m+23∴A∪B={x|x<m+23或x≥∵A∪B=R,∴m+23≥2,∴m≥∴實數m的取值范圍為[4,+∞).【變式3-3】(2021秋?黑龍江期末)已知集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1}.(1)當用m=5時,求A∩B,A∪B;(2)若A∪B=A,求實數m的取值范圍.【解題思路】(1)求出集合B,由此能求出A∩B,A∪B.(2)由A∪B=A,得B?A,當B=?時,m+1>2m﹣1,當B≠?時,m+1≤2m?【解答過程】解:(1)∵集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1}.m=5時,B={x|6≤x≤9},∴A∩B={x|6≤x≤7},A∪B={x|﹣2≤x≤9}.(2)∵集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1},A∪B=A,∴B?A,∴當B=?時,m+1>2m﹣1,解得m<2,當B≠?時,m+1≤2m?1m+1≥?22m?1≤7,解得綜上,實數m的取值范圍是(﹣∞,4].【題型4補集的運算】【方法點撥】①當集合用列舉法表示時,可借助Venn圖求解;②當集合是用描述法表示的連續數集時,可借助數軸,利用數軸分析求解.【例4】(2022?沈陽模擬)已知全集U={x∈N|﹣1<x≤3},A={1,2},?UA=()A.{3} B.{0,3} C.{﹣1,3} D.{﹣1,0,3}【解題思路】利用列舉法表示U,再由補集運算得答案.【解答過程】解:∵U={x∈N|﹣1<x≤3}={0,1,2,3},A={1,2},∴?UA={0,3}.故選:B.【變式4-1】(2022?林州市校級開學)已知全集A={x|1≤x≤6},集合B={x|1<x<5},則?AB=()A.{x|x≥5} B.{x|5<x≤6或x=1} C.{x|x≤1或x≥5} D.{x|5≤x≤6}∪{1}【解題思路】利用補集的定義,求解即可.【解答過程】解:∵全集A={x|1≤x≤6},集合B={x|1<x<5},∴?AB={x|5≤x≤6}∪{1},故選:D.【變式4-2】(2022?乙卷)設全集U={1,2,3,4,5},集合M滿足?UM={1,3},則()A.2∈M B.3∈M C.4?M D.5?M【解題思路】根據補集的定義寫出集合M,再判斷選項中的命題是否正確.【解答過程】解:因為全集U={1,2,3,4,5},?UM={1,3},所以M={2,4,5},所以2∈M,3?M,4∈M,5∈M.故選:A.【變式4-3】(2022?北京)已知全集U={x|﹣3<x<3},集合A={x|﹣2<x≤1},則?UA=()A.(﹣2,1] B.(﹣3,﹣2)∪[1,3) C.[﹣2,1) D.(﹣3,﹣2]∪(1,3)【解題思路】由補集的定義直接求解即可.【解答過程】解:因為全集U={x|﹣3<x<3},集合A={x|﹣2<x≤1},所以?UA={x|﹣3<x≤﹣2或1<x<3}=(﹣3,﹣2]∪(1,3).故選:D.【題型5交集、并集、補集的綜合運算】【方法點撥】①如果所給集合是有限集,則先把集合中的元素一一列舉出來,然后結合交集、并集、補集的定義來求解.在解答過程中常常借助于Venn圖來求解.②如果所給集合是無限集,則常借助數軸,把已知集合及全集分別表示在數軸上,然后進行交、并、補集的運算.解答過程中要注意邊界問題.【例5】(2022?臨沂三模)已知集合A=N,B={x|x≥3},A∩(?RB)=()A.{﹣1,0} B.{1,2} C.{﹣1,0,1} D.{0,1,2}【解題思路】根據題意,求出?RB,由交集的定義計算可得答案.【解答過程】解:根據題意,B={x|x≥3},則?RB={x|x<3},則A∩(?RB)={0,1,2};故選:D.【變式5-1】(2022?柯橋區模擬)已知集合A={x∈R|x≤0},B={x∈R|﹣1≤x≤1},則?R(A∪B)=()A.(﹣∞,0) B.[﹣1,0] C.[0,1] D.(1,+∞)【解題思路】先求A和B的并集,再求并集的補集.【解答過程】解:∵集合A={x∈R|x≤0},B={x∈R|﹣1≤x≤1}.∴A∪B={x∈R|x≤1}.則?R(A∪B)={x∈R|x>1}.故選:D.【變式5-2】(2022?大通縣三模)已知全集U={﹣1,0,1,2,3,4},集合A={x|x≤2,x∈N},B={﹣1,0,1,2},則A∪(?UB)=()A.{0,1,2} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2,3,4}【解題思路】先根據條件求得A和B的補集,再結合并集的定義求解即可.【解答過程】解:由題得A={x|x≤2,x∈N}={0,1,2},又B={﹣1,0,1,2},所以?UB={3,4},所以A∪(?UB)={0,1,2,3,4}.故選:D.【變式5-3】(2022?義烏市模擬)已知全集U=R,集合P={x|﹣2<x<1},Q={x|x?0},則P∩(?UQ)=()A.(﹣2,0) B.(0,1) C.(﹣∞,0)∪(0,1) D.(﹣∞,1)【解題思路】根據集合的基本運算即可求解.【解答過程】解:∵U=R,Q={x|x?0},∴?UQ={x|x<0},∵P={x|﹣2<x<1},∴P∩(?UQ)={x|﹣2<x<0}=(﹣2,0),故選:A.【題型6利用集合間的關系求參數】【方法點撥】①與集合的交、并、補運算有關的求參數問題一般利用數軸求解,涉及集合間關系時不要忘掉空集的情況.②不等式中的等號在補集中能否取到,要引起重視,還要注意補集是全集的子集.【例6】(2021秋?沈陽期末)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},U=R.(1)若A∪?UB=U,求實數m的取值范圍;(2)若A∩B≠?,求實數m的取值范圍.【解題思路】(1)由題意得B?A,然后對B是否為空集進行分類討論可求;(2)當A∩B=?時,結合B是否為空集進行分類討論可求m的范圍,然后結合補集思想可求滿足條件的m的范圍.【解答過程】解:(1)A∪?UB=U,所以B?A,當B=?時,m+1>2m﹣1,即m<2,當B≠?時,2m?解得2≤m≤3,綜上,m的取值范圍為{m|m≤3};(2)當A∩B=?時,當B=?時,m+1>2m﹣1,即m<2,當B≠?時,2m?1≥解得,m>4,綜上,A∩B=?時,m>4或m<2,故當A∩B≠?時,實數m的取值范圍為[2,4].【變式6-1】(2021秋?湖州期末)已知集合A={x|﹣3≤x≤2},B={x|2m﹣1≤x≤m+3}.(1)當m=0時,求?R(A∩B);(2)若A∪B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論