江西省鷹潭市2025屆高考數學必刷試卷含解析_第1頁
江西省鷹潭市2025屆高考數學必刷試卷含解析_第2頁
江西省鷹潭市2025屆高考數學必刷試卷含解析_第3頁
江西省鷹潭市2025屆高考數學必刷試卷含解析_第4頁
江西省鷹潭市2025屆高考數學必刷試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省鷹潭市2025屆高考數學必刷試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立2.已知函數,,若對任意,總存在,使得成立,則實數的取值范圍為()A. B.C. D.3.已知向量,夾角為,,,則()A.2 B.4 C. D.4.已知實數,則的大小關系是()A. B. C. D.5.如圖,圓的半徑為,,是圓上的定點,,是圓上的動點,點關于直線的對稱點為,角的始邊為射線,終邊為射線,將表示為的函數,則在上的圖像大致為()A. B. C. D.6.已知集合,,若,則()A.4 B.-4 C.8 D.-87.已知定義在上的奇函數滿足,且當時,,則()A.1 B.-1 C.2 D.-28.已知方程表示的曲線為的圖象,對于函數有如下結論:①在上單調遞減;②函數至少存在一個零點;③的最大值為;④若函數和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④9.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.11.設是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則12.如圖所示的程序框圖,若輸入,,則輸出的結果是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的極大值為______.14.若,i為虛數單位,則正實數的值為______.15.的二項展開式中,含項的系數為__________.16.曲線在點處的切線方程為__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.18.(12分)等差數列的前項和為,已知,.(1)求數列的通項公式;(2)設數列{}的前項和為,求使成立的的最小值.19.(12分)已知函數.(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當時,要使恒成立,求實數的取值范圍.20.(12分)已知為坐標原點,單位圓與角終邊的交點為,過作平行于軸的直線,設與終邊所在直線的交點為,.(1)求函數的最小正周期;(2)求函數在區間上的值域.21.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現統計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數表:亮燈時長/頻數1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數目.①求的數學期望和方差;②若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.22.(10分)已知等比數列中,,是和的等差中項.(1)求數列的通項公式;(2)記,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.2、C【解析】

將函數解析式化簡,并求得,根據當時可得的值域;由函數在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數在上單調遞增,當時,;而函數在上單調遞減,故,則只需,故,解得,故實數的取值范圍為.故選:C.【點睛】本題考查了導數在判斷函數單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.3、A【解析】

根據模長計算公式和數量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數量積運算,模長的求解,屬綜合基礎題.4、B【解析】

根據,利用指數函數對數函數的單調性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數函數對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.5、B【解析】

根據圖象分析變化過程中在關鍵位置及部分區域,即可排除錯誤選項,得到函數圖象,即可求解.【詳解】由題意,當時,P與A重合,則與B重合,所以,故排除C,D選項;當時,,由圖象可知選B.故選:B【點睛】本題主要考查三角函數的圖像與性質,正確表示函數的表達式是解題的關鍵,屬于中檔題.6、B【解析】

根據交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.7、B【解析】

根據f(x)是R上的奇函數,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數,即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數,且;∴;∴;∴的周期為4;∵時,;∴由奇函數性質可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數的奇偶性和周期性求值,此類問題一般根據條件先推導出周期,利用函數的周期變換來求解,考查理解能力和計算能力,屬于中等題.8、C【解析】

分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數圖象的對稱性可知③錯誤;對于④,函數和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的圖象與性質,函數的零點概念,考查了數形結合的數學思想.9、A【解析】

根據題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.10、A【解析】

由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.11、C【解析】

根據空間中直線與平面、平面與平面位置關系相關定理依次判斷各個選項可得結果.【詳解】對于,當為內與垂直的直線時,不滿足,錯誤;對于,設,則當為內與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設,則當為內與平行的直線時,,錯誤.故選:.【點睛】本題考查立體幾何中線面關系、面面關系有關命題的辨析,考查學生對于平行與垂直相關定理的掌握情況,屬于基礎題.12、B【解析】

列舉出循環的每一步,可得出輸出結果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求函的定義域,再對函數進行求導,再解不等式得單調區間,進而求得極值點,即可求出函數的極大值.【詳解】函數,,,令得,,當時,,函數單調遞增;當時,,函數單調遞減,當時,函數取到極大值,極大值為.故答案為:.【點睛】本題考查利用導數研究函數的極值,考查函數與方程思想、轉化與化歸思想,考查運算求解能力,求解時注意定義域優先法則的應用.14、【解析】

利用復數模的運算性質,即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數模的運算性質,考查推理能力與計算能力,屬于基礎題.15、【解析】

寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.16、【解析】

對函數求導后,代入切點的橫坐標得到切線斜率,然后根據直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點睛】本題主要考查過曲線上一點的切線方程的求法,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)點M的極坐標為或(2)【解析】

(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,∵∴或,所以點M的極坐標為或(2)由題意可設,.由,得,.故時,的最大值為.【點睛】本小題主要考查極坐標的求法,考查極坐標下兩點間距離的計算以及距離最值的求法,屬于中檔題.18、(1);(2)的最小值為19.【解析】

(1)根據條件列方程組求出首項、公差,即可寫出等差數列的通項公式;(2)根據等差數列前n項和化簡,利用裂項相消法求和,解不等式即可求解.【詳解】(1)等差數列的公差設為,,,可得,,解得,,則;(2),,前n項和為,即,可得,即,則的最小值為19.【點睛】本題主要考查了等差數列的通項公式,等差數列的前n項和,裂項相消法求和,屬于中檔題19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)求函數的導函數,即可求得切線的斜率,則切線方程得解;(Ⅱ)構造函數,對參數分類討論,求得函數的單調性,以及最值,即可容易求得參數范圍.【詳解】(Ⅰ)當時,,則.所以.又,故所求切線方程為,即.(Ⅱ)依題意,得,即恒成立.令,則.①當時,因為,不合題意.②當時,令,得,,顯然.令,得或;令,得.所以函數的單調遞增區間是,,單調遞減區間是.當時,,,所以,只需,所以,所以實數的取值范圍為.【點睛】本題考查利用導數的幾何意義求切線方程,以及利用導數研究恒成立問題,屬綜合中檔題.20、(1);(2).【解析】

(1)根據題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數,最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數的值域.【詳解】(1)因為,,所以,,所以函數的最小正周期為.(2)因為,所以,所以,故函數在區間上的值域為.【點睛】本題考查正弦型函數的周期和值域,運用到向量的坐標運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.21、(1)(2)①,,②72【解析】

(1)將每組數據的組中值乘以對應的頻率,然后再將結果相加即可得到亮燈時長的平均數,將此平均數除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據條件計算出的取值范圍,然后根據并結合正態分布概率的對稱性,求解出在滿足取值范圍下對應的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據頻數分布表求解平均數、幾何概型(長度模型)、二項分布的均值與方差、正態分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論