




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆上海市外國語大學附屬外國語學校高考壓軸卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個2.在我國傳統文化“五行”中,有“金、木、水、火、土”五個物質類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.83.由實數組成的等比數列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.的展開式中有理項有()A.項 B.項 C.項 D.項5.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-16.函數的大致圖象是()A. B.C. D.7.我國宋代數學家秦九韶(1202-1261)在《數書九章》(1247)一書中提出“三斜求積術”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質是根據三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或8.已知,,分別是三個內角,,的對邊,,則()A. B. C. D.9.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于10.已知函數,若函數的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.11.在函數:①;②;③;④中,最小正周期為的所有函數為()A.①②③ B.①③④ C.②④ D.①③12.已知雙曲線()的漸近線方程為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數的最大值為3,的圖象與y軸的交點坐標為,其相鄰兩條對稱軸間的距離為2,則14.二項式的展開式的各項系數之和為_____,含項的系數為_____.15.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.16.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(為常數)(Ⅰ)當時,求的單調區間;(Ⅱ)若為增函數,求實數的取值范圍.18.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.19.(12分)已知x∈R,設,,記函數.(1)求函數取最小值時x的取值范圍;(2)設△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.20.(12分)曲線的參數方程為(為參數),以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線,的交點分別為、(、異于原點),當斜率時,求的最小值.21.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數的取值范圍.22.(10分)聯合國糧農組織對某地區最近10年的糧食需求量部分統計數據如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數據可知,年需求量與年份之間具有線性相關關系,我們以“年份—2014”為橫坐標,“需求量”為縱坐標,請完成如下數據處理表格:年份—20140需求量—2570(2)根據回歸直線方程分析,2020年聯合國糧農組織計劃向該地區投放糧食300萬噸,問是否能夠滿足該地區的糧食需求?參考公式:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.2、B【解析】
利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.3、C【解析】
根據等比數列的性質以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數列的通項公式是解決本題的關鍵.4、B【解析】
由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.5、D【解析】
利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.6、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數圖象,屬基礎題.7、C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關系求解.【詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關系,還考查了對數學史的理解能力,屬于基礎題.8、C【解析】
原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.9、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.10、C【解析】
對此分段函數的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環,而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經單調性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數極值的求解,從函數表達式中抽離出相應的等差數列和等比數列,最后分組求和,要求學生對數列和函數的熟悉程度高,為中檔題11、A【解析】逐一考查所給的函數:,該函數為偶函數,周期;將函數圖象x軸下方的圖象向上翻折即可得到的圖象,該函數的周期為;函數的最小正周期為;函數的最小正周期為;綜上可得最小正周期為的所有函數為①②③.本題選擇A選項.點睛:求三角函數式的最小正周期時,要盡可能地化為只含一個三角函數的式子,否則很容易出現錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.12、A【解析】
根據雙曲線方程(),確定焦點位置,再根據漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數的圖像與性質.14、【解析】
將代入二項式可得展開式各項系數之和,寫出二項展開式通項,令的指數為,求出參數的值,代入通項即可得出項的系數.【詳解】將代入二項式可得展開式各項系數和為.二項式的展開式通項為,令,解得,因此,展開式中含項的系數為.故答案為:;.【點睛】本題考查了二項式定理及二項式展開式通項公式,屬基礎題.15、【解析】
由切線的性質,可知,切由直角三角形PAO,PBO,即可設,進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數求出最小值.【詳解】由題可知,,設,由切線的性質可知,則顯然,則或(舍去)因為令,則,由雙勾函數單調性可知其在區間上單調遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關系為背景下求向量數量積的最值問題,應用函數形式表示所求式子,進而利用分析函數單調性或基本不等式求得最值,屬于較難題.16、【解析】
計算出角的取值范圍,結合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數圖象和性質,考查了轉化思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)單調遞增區間為,;單調遞減區間為;(Ⅱ).【解析】
(Ⅰ)對函數進行求導,利用導數判斷函數的單調性即可;(Ⅱ)對函數進行求導,由題意知,為增函數等價于在區間恒成立,利用分離參數法和基本不等式求最值即可求出實數的取值范圍.【詳解】(Ⅰ)由題意知,函數的定義域為,當時,,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調遞增區間為,,單調遞減區間為.(Ⅱ)由題意得在區間恒成立,即在區間恒成立.,當且僅當,即時等號成立.所以,所以的取值范圍是.【點睛】本題考查利用導數求函數的單調區間、利用分離參數法和基本不等式求最值求參數的取值范圍;考查運算求解能力和邏輯推理能力;利用導數把函數單調性問題轉化為不等式恒成立問題是求解本題的關鍵;屬于中檔題、常考題型.18、(1);(2).【解析】
(1)根據題意得到GB是線段的中垂線,從而為定值,根據橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設橢圓方程為(),則,,,所以曲線C的方程為.(2)設直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關系從而判斷軌跡,直線與曲線相交一般聯立設而不求韋達定理進行求解即可,屬于一般性題目.19、(1);(2)【解析】
(1)先根據向量的數量積的運算,以及二倍角公式和兩角和的正弦公式化簡得到f(x)=,再根據正弦函數的性質即可求出答案;(2)先求出C的大小,再根據余弦定理和基本不等式,即可求出,根據三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時,,取最小值,所以,所求的取值集合是;(2)由,得,因為,所以,所以,.在中,由余弦定理,得,即,當且僅當時取等號,所以的面積,因此的面積的最大值為.【點睛】本題考查了向量的數量積的運算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.20、(1)的極坐標方程為;曲線的直角坐標方程.(2)【解析】
(1)消去參數,可得曲線的直角坐標方程,再利用極坐標與直角坐標的互化,即可求解.(2)解法1:設直線的傾斜角為,把直線的參數方程代入曲線的普通坐標方程,求得,再把直線的參數方程代入曲線的普通坐標方程,得,得出,利用基本不等式,即可求解;解法2:設直線的極坐標方程為,分別代入曲線,的極坐標方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線的參數方程為(為參數),消去參數,可得曲線的直角坐標方程為,即,則曲線的極坐標方程為,即,又因為曲線的極坐標方程為,即,根據,代入即可求解曲線的直角坐標方程.(2)解法1:設直線的傾斜角為,則直線的參數方程為(為參數,),把直線的參數方程代入曲線的普通坐標方程得:,解得,,,把直線的參數方程代入曲線的普通坐標方程得:,解得,,,,,即,,,,當且僅當,即時取等號,故的最小值為.解法2:設直線的極坐標方程為),代入曲線的極坐標方程,得,,把直線的參數方程代入曲線的極坐標方程得:,,即,,曲線的參,即,,,,當且僅當,即時取等號,故的最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息處理技術員備考資料分享試題及答案
- 用于火災防控的應急預案(3篇)
- 材料疲勞壽命預測影響因素分析重點基礎知識點
- 行政法學考前指導試題與答案
- 行政法相關的國際條約試題及答案
- 2025年市場細分與定位試題及答案
- 法學概論成績提升的試題及答案
- 行政法學的多角度研究方法試題及答案
- 勞動法中集體合同的重要性試題及答案
- 行政法學的制度環境分析試題及答案
- 蔬菜生產實習總結
- 機車檢修管理
- 消防工程包清工合同范本年
- 《無痛消化內鏡》課件
- 衛生院三基三嚴培訓計劃
- 中央空調改造項目施工方案
- 2025年巴中發展控股集團限公司招聘高頻重點提升(共500題)附帶答案詳解
- 課題申報書:新中國成立以來人民幣圖像的國家形象視覺構建研究
- 年產10萬噸高鹽稀態發酵醬油車間設計
- 2024-2030年中國對苯二甲酸工業市場發展前景調研及投資戰略分析報告
- 《護理心理學》試題及參考答案(四)
評論
0/150
提交評論