




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省廣州市仲元中學高三適應性調研考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列的前n項和為,且,則()A.4 B.8 C.16 D.22.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.3.設集合,,則集合A. B. C. D.4.已知復數滿足:,則的共軛復數為()A. B. C. D.5.在函數:①;②;③;④中,最小正周期為的所有函數為()A.①②③ B.①③④ C.②④ D.①③6.若,則,,,的大小關系為()A. B.C. D.7.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.8.已知函數.設,若對任意不相等的正數,,恒有,則實數a的取值范圍是()A. B.C. D.9.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.510.若數列為等差數列,且滿足,為數列的前項和,則()A. B. C. D.11.是虛數單位,復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.偶函數關于點對稱,當時,,求()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若滿足,且方向相同,則__________.14.已知內角的對邊分別為外接圓的面積為,則的面積為_________.15.拋物線的焦點到準線的距離為.16.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)設,求函數的單調區間,并證明函數有唯一零點.(2)若函數在區間上不單調,證明:.18.(12分)已知函數.(1)當時,求函數在處的切線方程;(2)若函數沒有零點,求實數的取值范圍.19.(12分)已知函數的定義域為.(1)求實數的取值范圍;(2)設實數為的最小值,若實數,,滿足,求的最小值.20.(12分)某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統計,將數據按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.理科方向文科方向總計男110女50總計(1)根據已知條件完成下面列聯表,并據此判斷是否有99%的把握認為是否為“文科方向”與性別有關?(2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)記數列的前項和為,已知成等差數列.(1)證明:數列是等比數列,并求的通項公式;(2)記數列的前項和為,求.22.(10分)數列滿足,是與的等差中項.(1)證明:數列為等比數列,并求數列的通項公式;(2)求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用等差的求和公式和等差數列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數列的求和公式和等差數列的性質,考查基本量的計算,難度容易.2、D【解析】
根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.3、B【解析】
先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數化為正數,且不等號的另一邊化為,然后通過因式分解,求得對應的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.4、B【解析】
轉化,為,利用復數的除法化簡,即得解【詳解】復數滿足:所以故選:B【點睛】本題考查了復數的除法和復數的基本概念,考查了學生概念理解,數學運算的能力,屬于基礎題.5、A【解析】逐一考查所給的函數:,該函數為偶函數,周期;將函數圖象x軸下方的圖象向上翻折即可得到的圖象,該函數的周期為;函數的最小正周期為;函數的最小正周期為;綜上可得最小正周期為的所有函數為①②③.本題選擇A選項.點睛:求三角函數式的最小正周期時,要盡可能地化為只含一個三角函數的式子,否則很容易出現錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.6、D【解析】因為,所以,因為,,所以,.綜上;故選D.7、A【解析】
由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平.8、D【解析】
求解的導函數,研究其單調性,對任意不相等的正數,構造新函數,討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數a的取值范圍是故選:D.【點睛】此題考查含參函數研究單調性問題,根據參數范圍化簡后構造新函數轉換為含參恒成立問題,屬于一般性題目.9、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.10、B【解析】
利用等差數列性質,若,則求出,再利用等差數列前項和公式得【詳解】解:因為,由等差數列性質,若,則得,.為數列的前項和,則.故選:.【點睛】本題考查等差數列性質與等差數列前項和.(1)如果為等差數列,若,則.(2)要注意等差數列前項和公式的靈活應用,如.11、D【解析】
求出復數在復平面內對應的點的坐標,即可得出結論.【詳解】復數在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數對應的點的位置的判斷,屬于基礎題.12、D【解析】
推導出函數是以為周期的周期函數,由此可得出,代值計算即可.【詳解】由于偶函數的圖象關于點對稱,則,,,則,所以,函數是以為周期的周期函數,由于當時,,則.故選:D.【點睛】本題考查利用函數的對稱性和奇偶性求函數值,推導出函數的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由向量平行坐標表示計算.注意驗證兩向量方向是否相同.【詳解】∵,∴,解得或,時,滿足題意,時,,方向相反,不合題意,舍去.∴.故答案為:1.【點睛】本題考查向量平行的坐標運算,解題時要注意驗證方向相同這個條件,否則會出錯.14、【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內角,從而有,于是可得三角形邊長,可得面積.【詳解】設外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵.15、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質.16、【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數據求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點睛】本題考查幾何體與三視圖的對應關系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關鍵是準確理解幾何體的定義,真正把握幾何體的結構特征,可以根據條件構建幾何模型,在幾何模型中進行判斷.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)為增區間;為減區間.見解析(2)見解析【解析】
(1)先求得的定義域,然后利用導數求得的單調區間,結合零點存在性定理判斷出有唯一零點.(2)求得的導函數,結合在區間上不單調,證得,通過證明,證得成立.【詳解】(1)∵函數的定義域為,由,解得為增區間;由解得為減區間.下面證明函數只有一個零點:∵,所以函數在區間內有零點,∵,函數在區間上沒有零點,故函數只有一個零點.(2)證明:函數,則當時,,不符合題意;當時,令,則,所以在上單調增函數,而,又∵區間上不單調,所以存在,使得在上有一個零點,即,所以,且,即兩邊取自然對數,得即,要證,即證,先證明:,令,則∴在上單調遞增,即,∴①在①中令,∴令∴,即即,∴.【點睛】本小題主要考查利用導數研究函數的單調區間和零點,考查利用導數證明不等式,考查分類討論的數學思想方法,考查化歸與轉化的數學思想方法,屬于難題.18、(1).(2)【解析】
(1)利用導數的幾何意義求解即可;(2)利用導數得出的單調性以及極值,從而得出的圖象,將函數的零點問題轉化為函數圖象的交點問題,由圖,即可得出實數的取值范圍.【詳解】(1)當時,,∴切線斜率,又切點∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調遞增極大值單調遞減當時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.【點睛】本題主要考查了導數的幾何意義的應用,利用導數研究函數的零點問題,屬于中檔題.19、(1);(2)【解析】
(1)首先通過對絕對值內式子符號的討論,將不等式轉化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數定義域為,即恒成立,所以恒成立由單調性可知當時,有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當且僅當,,時,等號成立【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應用,意在考查學生的轉化能力和計算求解能力.20、(1)列聯表見解析,有;(2)分布列見解析,,.【解析】
(1)由頻率分布直方圖可得分數在、之間的學生人數,可得列聯表.根據列聯表計算的值,結合參考臨界值表可得到結論;(2)從該校高一學生中隨機抽取1人,求出該人為“文科方向”的概率.由題意,求出分布列,根據公式求出期望和方差.【詳解】(1)由頻率分布直方圖可得分數在之間的學生人數為,在之間的學生人數為,所以低于60分的學生人數為120.因此列聯表為理科方向文科方向總計男8030110女405090總計12080200又,所以有99%的把握認為是否為“文科方向”與性別有關.(2)易知從該校高一學生中隨機抽取1人,則該人為“文科方向”的概率為.依題意知,所以(),所以的分布列為0123P所以期望,方差.【點睛】本題考查獨立性檢驗,考查離散型隨機變量的分布列、期望和方差,屬于中檔題.21、(1)證明見解析,;(2)【解析】
(1)由成等差數列,可得到,再結合公式,消去,得到,再給等式兩邊同時加1,整理可證明結果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年綠面臺板項目市場調查研究報告
- 農戶生活清潔能源采用行為及激勵機制研究
- 2025年球型響壺項目市場調查研究報告
- 項目化學習的課堂文化研究
- 2025年水洗商標項目市場調查研究報告
- 全光關聯噪聲通道及其在量子相干性恢復中的應用
- 自我評價對高中生英語寫作語言質量的影響研究
- 湖北傳統音樂元素引入中學音樂課堂的實踐初探-以《小提琴協奏曲-鄉情》為例
- 數學興趣培養與六年級輔導措施
- 2025年中式烹調師(中級)烹飪創新理論考核試卷
- 在校生《學籍證明》申請表(模板)
- 電梯故障維修記錄
- 員工招聘外文翻譯文獻
- 中國世界文化遺產課件
- 預防接種工作單位資質申請表
- 2022年四川省成都市青羊區七下期末數學試卷
- 智慧健康管理ppt課件
- 天牛的識別與防治PPT演示課件(PPT 99頁)
- 英語51閱讀理解主旨題(best-title)答題技巧
- 孔距尺寸的標注與孔的位置度公差的確定
- 服裝工藝(各工序)單價表
評論
0/150
提交評論