江西省撫州市臨川二中、臨川二中實驗學校2025屆高三最后一卷數學試卷含解析_第1頁
江西省撫州市臨川二中、臨川二中實驗學校2025屆高三最后一卷數學試卷含解析_第2頁
江西省撫州市臨川二中、臨川二中實驗學校2025屆高三最后一卷數學試卷含解析_第3頁
江西省撫州市臨川二中、臨川二中實驗學校2025屆高三最后一卷數學試卷含解析_第4頁
江西省撫州市臨川二中、臨川二中實驗學校2025屆高三最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省撫州市臨川二中、臨川二中實驗學校2025屆高三最后一卷數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.2.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則3.已知,則()A. B. C. D.4.函數且的圖象是()A. B.C. D.5.某中學有高中生人,初中生人為了解該校學生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.6.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.7.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.8.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.9.設為等差數列的前項和,若,,則的最小值為()A. B. C. D.10.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.411.復數滿足為虛數單位),則的虛部為()A. B. C. D.12.函數的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三棱柱中,,側棱底面,且三棱柱的側面積為.若該三棱柱的頂點都在同一個球的表面上,則球的表面積的最小值為_____.14.在中,,點是邊的中點,則__________,________.15.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.16.已知拋物線的焦點為,直線與拋物線相切于點,是上一點(不與重合),若以線段為直徑的圓恰好經過,則點到拋物線頂點的距離的最小值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數,并說明理由.18.(12分)已知函數()的圖象在處的切線為(為自然對數的底數)(1)求的值;(2)若,且對任意恒成立,求的最大值.19.(12分)選修4-4:坐標系與參數方程已知曲線的參數方程是(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.20.(12分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.21.(12分)近年來,隨著“霧霾”天出現的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調查中,共調查了人,其中女性人,男性人,并根據統計數據畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關系并說明理由;(2)根據統計數據建立一個列聯表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關系.附:22.(10分)已知分別是的內角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.2、C【解析】

根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.3、B【解析】

利用誘導公式以及同角三角函數基本關系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.4、B【解析】

先判斷函數的奇偶性,再取特殊值,利用零點存在性定理判斷函數零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數,關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數圖象的判斷,考查了函數的性質,屬于中檔題.5、B【解析】

利用某一層樣本數等于某一層的總體個數乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數等于某一層的總體個數乘以抽樣比,本題是一道基礎題.6、D【解析】

根據拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.7、A【解析】

由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.8、C【解析】

試題分析:將參數a與變量x分離,將不等式恒成立問題轉化為求函數最值問題,即可得到結論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區間上是增函數∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應用點評:本題綜合考查了不等式的應用、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題9、C【解析】

根據已知條件求得等差數列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數列通項公式和前項和公式的基本量計算,考查等差數列前項和最值的求法,屬于基礎題.10、C【解析】

根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.11、C【解析】

,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復數的除法運算,考查學生的基本運算能力,是一道基礎題.12、C【解析】

根據函數奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數為奇函數,∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據函數解析式選擇函數圖象,注意奇偶性及特殊值的用法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設棱柱的底面邊長為,高為,則三棱柱的側面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設,∴三棱柱的側面積為∴又外接球半徑∴外接球表面積.故答案為:【點睛】考查學生對幾何體的正確認識,能通過題意了解到題目傳達的意思,培養學生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題14、2【解析】

根據正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數量積的應用,考查計算能力,屬于中檔題.15、2【解析】

由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.16、【解析】

根據拋物線,不妨設,取,通過求導得,,再根據以線段為直徑的圓恰好經過,則,得到,兩式聯立,求得點N的軌跡,再求解最值.【詳解】因為拋物線,不妨設,取,所以,即,所以,因為以線段為直徑的圓恰好經過,所以,所以,所以,由,解得,所以點在直線上,所以當時,最小,最小值為.故答案為:2【點睛】本題主要考查直線與拋物線的位置關系直線的交軌問題,還考查了運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關系,求函數導數,要求函數有兩個極值點,只需在內有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據函數圖象和極值的大小判斷零點的個數.試題解析:(Ⅰ)根據題意:令,可得,所以,經驗證,可得當時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等的正數根,所以或解得或無解,所以的取值范圍,可得,由題意知,令,則.而當時,,即,所以在上單調遞減,所以即時,.(Ⅲ)因為,.令得,.由(Ⅱ)知時,的對稱軸,,,所以.又,可得,此時,在上單調遞減,上單調遞增,上單調遞減,所以最多只有三個不同的零點.又因為,所以在上遞增,即時,恒成立.根據(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個不同的零點:,1,.綜上所述,恰有三個不同的零點.【點睛】利用賦值法求出關系,利用函數導數,研究函數的單調性,要求函數有兩個極值點,只需在內有兩個實根,利用一元二次方程的根的分布求出的取值范圍,利用函數的導數研究函數的單調性、極值,再根據函數圖象和極值的大小判斷零點的個數是近年高考壓軸題的熱點.18、(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據函數的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據對任意恒成立,等價于對任意恒成立,構造,求出的單調性,由,,,,可得存在唯一的零點,使得,利用單調性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調遞減,在上單調遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數研究不等式恒成立或存在型問題,首先要構造函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造函數,直接把問題轉化為函數的最值問題.19、(1)線的普通方程為,曲線的直角坐標方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數方程化為普通方程,進而利用即可化為極坐標方程,同理可得曲線C2的直角坐標方程;

(2)由過的圓心,得得,設,,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標方程為曲線的直角坐標方程為(2)在直角坐標系下,,,恰好過的圓心,

∴由得,是橢圓上的兩點,在極坐標下,設,分別代入中,有和∴,則,即20、(1)(為參數),;(2)【解析】分析:(1)直線的參數方程為(為參數),其中表示之間的距離,而極坐標方程可化為,從而的直角方程為.(2)設,則,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數方程為(為參數).曲線的極坐標方程可化為.把,代入曲線的極坐標方程可得,即.(2)把直線的參數方程為(為參數)代入圓的方程可得:.∵曲線與直線相交于不同的兩點,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點睛:(1)直線的參數方程有多種形式,其中一種為(為直線的傾斜角,是參數),這樣的參數方程中的參數有明確的幾何意義,它表示之間的距離.(2)直角坐標方程轉為極坐標方程的關鍵是利用公式,而極坐標方程轉化為直角坐標方程的關鍵是利用公式,后者也可以把極坐標方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論