




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省葫蘆島市第一中學2025屆高考考前提分數學仿真卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,若,則實數的值可以為()A. B. C. D.2.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加3.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻).若從含有兩個及以上陽爻的卦中任取兩卦,這兩卦的六個爻中都恰有兩個陽爻的概率為()A. B. C. D.4.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.65.現有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.6.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個7.若函數函數只有1個零點,則的取值范圍是()A. B. C. D.8.已知變量的幾組取值如下表:12347若與線性相關,且,則實數()A. B. C. D.9.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.9810.執行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.12811.設橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,直線BF交直線AC于M,且M為AC的中點,則橢圓E的離心率是()A. B. C. D.12.根據黨中央關于“精準”脫貧的要求,我市某農業經濟部門派四位專家對三個縣區進行調研,每個縣區至少派一位專家,則甲,乙兩位專家派遣至同一縣區的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數列的前項和為,,且,則__________.14.已知,為虛數單位,且,則=_____.15.數據的標準差為_____.16.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.18.(12分)在平面直角坐標系中,曲線的參數方程是(為參數),以原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.19.(12分)已知函數.(Ⅰ)當時,討論函數的單調區間;(Ⅱ)若對任意的和恒成立,求實數的取值范圍.20.(12分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.21.(12分)已知函數(1)當時,求不等式的解集;(2)的圖象與兩坐標軸的交點分別為,若三角形的面積大于,求參數的取值范圍.22.(10分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題意可得,根據,即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.2、C【解析】
根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.3、B【解析】
基本事件總數為個,都恰有兩個陽爻包含的基本事件個數為個,由此求出概率.【詳解】解:由圖可知,含有兩個及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個,其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個,所以,所求的概率.故選:B.【點睛】本題滲透傳統文化,考查概率、計數原理等基本知識,考查抽象概括能力和應用意識,屬于基礎題.4、D【解析】
作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.5、B【解析】
求得基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數和所求事件所包含的基本事件的個數,利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.6、B【解析】
根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數的計算,當集合中有元素時,集合子集的個數為,真子集個數為,非空子集為,非空真子集為,屬基礎題.7、C【解析】
轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態相切時的斜率,數形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數在函數零點問題中的應用,考查了學生數形結合,轉化劃歸,數學運算的能力,屬于較難題.8、B【解析】
求出,把坐標代入方程可求得.【詳解】據題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質線性回歸直線一定過中心點可計算參數值.9、C【解析】
由題意,逐步分析循環中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.10、C【解析】
根據給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執行上述程序框圖,可得第1次循環,滿足判斷條件,;第2次循環,滿足判斷條件,;第3次循環,滿足判斷條件,;第4次循環,滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.11、C【解析】
連接,為的中位線,從而,且,進而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,不妨設B在第二象限,直線BF交直線AC于M,且M為AC的中點為的中位線,,且,,解得橢圓的離心率.故選:C【點睛】本題考查了橢圓的幾何性質,考查了運算求解能力,屬于基礎題.12、A【解析】
每個縣區至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區的概率.【詳解】派四位專家對三個縣區進行調研,每個縣區至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區包含的基本事件個數:甲,乙兩位專家派遣至同一縣區的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意知,繼而利用等比數列的前項和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點睛】本題考查了等比數列的通項公式和求和公式,屬于中檔題.14、4【解析】
解:利用復數相等,可知由有.15、【解析】
先計算平均數再求解方差與標準差即可.【詳解】解:樣本的平均數,這組數據的方差是標準差,故答案為:【點睛】本題主要考查了標準差的計算,屬于基礎題.16、【解析】
根據向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數量積的取值范圍,涉及基本運算,關鍵在于恰當地對向量進行轉換,便于計算解題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)取的中點,連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得二面角的余弦值,進而可求得其正弦值.【詳解】(1)取中點,連接、、,且,四邊形為平行四邊形,且,、分別為、中點,且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、,,,,設平面的法向量為,由,得,取,則,,,設平面的法向量為,由,得,取,則,,,,,因此,二面角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.18、(1)(x-1)2+y2=4,直線l的直角坐標方程為x-y-2=0;(2)3.【解析】
(1)消參得到曲線的普通方程,利用極坐標和直角坐標方程的互化公式求得直線的直角坐標方程;(2)先得到直線的參數方程,將直線的參數方程代入到圓的方程,得到關于的一元二次方程,由根與系數的關系、參數的幾何意義進行求解.【詳解】(1)由曲線C的參數方程(α為參數)(α為參數),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數方程為(t為參數).設A,B兩點對應的參數分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數)代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.19、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)首先求得導函數,然后結合導函數的解析式分類討論函數的單調性即可;(Ⅱ)將原問題進行等價轉化為,,恒成立,然后構造新函數,結合函數的性質確定實數的取值范圍即可.【詳解】解:(Ⅰ)當時,,當時,在上恒成立,函數在上單調遞減;當時,由得:;由得:.∴當時,函數的單調遞減區間是,無單調遞增區間:當時,函數的單調遞減區間是,函數的單調遞增區間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區間上單調遞減,在區間上單調遞增,∴當時,,即又∵,∴實數的取值范圍是:.【點睛】本題主要考查導函數研究函數的單調性和恒成立問題,考查分類討論的數學思想,等價轉化的數學思想等知識,屬于中等題.20、(1)見解析;(2)【解析】
(1)取的中點,連接,,由,進而,由,得.進而平面,進而結論可得證(2)(方法一)過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點,上的點,使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點,連接,,由已知得,所以,又點是的中點,所以.因為,點是線段的中點,所以.又因為,所以,從而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,則點,,,,所以,,.設平面的法向量為,由,得,令,得.同理,設平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點,上的點,使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計算得,,,所以.【點睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計算能力,是中檔題21、(1)(2)【解析】
(1)當時,不等式可化為:,再利用絕對值的意義,分,,討論求解.(2)根據可得,得到函數的圖象與兩坐標軸的交點坐標分別為,再利用三角形面積公式由求解.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年藝術設計專業考試試卷及答案
- 2025年攝影藝術專業考試題及答案
- 2025年特許金融分析師考試試卷及答案
- 2025年安全工程師考試試題及答案
- 阿克蘇商鋪租賃合同范本
- 鐵路局車輛段團委XX年上半年工作總結
- 2025年進排氣歧管項目發展計劃
- 提升服務品質培訓
- 在校醫學生未來職業規劃
- 紅茶品牌全國范圍內代理及市場開發合同
- 2024年安徽省初中地理會考卷真題含參考答案
- 車輛超載超限培訓
- 燃氣行業數字化轉型與智能化升級
- 計算機程序設計員國家職業技能標準
- 《人民調解法》講解
- 新加坡員工合同范本
- 《無人機測繪技能訓練模塊》課件-模塊9:無人機解析空中三角測量
- JT-T-1116-2017公路鐵路并行路段設計技術規范
- 2024年四川省樂山市中考地理試卷 附答案
- DB3210T 1175-2024 農民田間學校運行管理規范
- 安徽省合肥168中學2024屆八下物理期末考試試題及答案解析
評論
0/150
提交評論