2025屆云南省曲靖市宣威市民中高考仿真卷數學試卷含解析_第1頁
2025屆云南省曲靖市宣威市民中高考仿真卷數學試卷含解析_第2頁
2025屆云南省曲靖市宣威市民中高考仿真卷數學試卷含解析_第3頁
2025屆云南省曲靖市宣威市民中高考仿真卷數學試卷含解析_第4頁
2025屆云南省曲靖市宣威市民中高考仿真卷數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省曲靖市宣威市民中高考仿真卷數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.2.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2333.已知復數滿足,則的最大值為()A. B. C. D.64.設命題函數在上遞增,命題在中,,下列為真命題的是()A. B. C. D.5.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.6.已知f(x),g(x)都是偶函數,且在[0,+∞)上單調遞增,設函數F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)7.若復數(為虛數單位),則()A. B. C. D.8.正三棱錐底面邊長為3,側棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.9.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點相同,則雙曲線漸近線方程為()A. B.C. D.10.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,11.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.12.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.在區間內任意取一個數,則恰好為非負數的概率是________.14.在中,內角的對邊分別為,已知,則的面積為___________.15.若函數為自然對數的底數)在和兩處取得極值,且,則實數的取值范圍是______.16.《九章算術》中記載了“今有共買豕,人出一百,盈一百;人出九十,適足。問人數、豕價各幾何?”.其意思是“若干個人合買一頭豬,若每人出100,則會剩下100;若每人出90,則不多也不少。問人數、豬價各多少?”.設分別為人數、豬價,則___,___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足(),數列的前項和,(),且,.(1)求數列的通項公式:(2)求數列的通項公式.(3)設,記是數列的前項和,求正整數,使得對于任意的均有.18.(12分)在中,內角的對邊分別是,已知.(1)求的值;(2)若,求的面積.19.(12分)已知函數(1)求函數的單調遞增區間(2)記函數的圖象為曲線,設點是曲線上不同兩點,如果在曲線上存在點,使得①;②曲線在點M處的切線平行于直線AB,則稱函數存在“中值和諧切線”,當時,函數是否存在“中值和諧切線”請說明理由20.(12分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.21.(12分)在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.22.(10分)在中,為邊上一點,,.(1)求;(2)若,,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.2、C【解析】

計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,Fc,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.3、B【解析】

設,,利用復數幾何意義計算.【詳解】設,由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復數模的最大值,其實本題可以利用不等式來解決.4、C【解析】

命題:函數在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數單調性判斷出真假.【詳解】解:命題:函數,所以,當時,,即函數在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.5、C【解析】

由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.6、A【解析】試題分析:由題意得,F(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數的性質;2.分類討論的數學思想.【思路點睛】本題在在解題過程中抓住偶函數的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優化,另外,不要忘記定義域,如果要研究奇函數或者偶函數的值域、最值、單調性等問題,通常先在原點一側的區間(對奇(偶)函數而言)或某一周期內(對周期函數而言)考慮,然后推廣到整個定義域上.7、B【解析】

根據復數的除法法則計算,由共軛復數的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數的除法計算,共軛復數的概念,屬于容易題.8、D【解析】

由側棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關系.掌握正棱錐性質是解題關鍵.9、A【解析】

由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點睛】本題考查橢圓和雙曲線的方程和性質,考查漸近線方程的求法,考查方程思想和運算能力,屬于基礎題.10、A【解析】

依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.11、A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數量積的運算性質、向量垂直與數量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.12、A【解析】

由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先分析非負數對應的區間長度,然后根據幾何概型中的長度模型,即可求解出“恰好為非負數”的概率.【詳解】當是非負數時,,區間長度是,又因為對應的區間長度是,所以“恰好為非負數”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關鍵是能判斷出目標事件對應的區間長度.14、【解析】

由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.15、【解析】

先將函數在和兩處取得極值,轉化為方程有兩不等實根,且,再令,將問題轉化為直線與曲線有兩交點,且橫坐標滿足,用導數方法研究單調性,作出簡圖,求出時,的值,進而可得出結果.【詳解】因為,所以,又函數在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數在上單調遞增;當,時,,即函數在和上單調遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數的應用,已知函數極值點間的關系求參數的問題,通常需要將函數極值點,轉化為導函數對應方程的根,再轉化為直線與曲線交點的問題來處理,屬于??碱}型.16、10900【解析】

由題意列出方程組,求解即可.【詳解】由題意可得,解得.故答案為10900【點睛】本題主要考查二元一次方程組的解法,用消元法來求解即可,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)().(2),.(3)【解析】

(1)依題意先求出,然后根據,求出的通項公式為,再檢驗的情況即可;(2)由遞推公式,得,結合數列性質可得數列相鄰項之間的關系,從而可求出結果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數單調性可求的范圍,從而列不等式可解.【詳解】解:(1)因為數列滿足()①;②當時,.檢驗當時,成立.所以,數列的通項公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因為,所以,上式同除以,得,,即,所以,數列時首項為1,公差為1的等差數列,故,.(3)因為.所以,,,,.記,當時,.所以,當時,數列為單調遞減,當時,.從而,當時,.因此,.所以,對任意的,.綜上,.【點睛】本題考在數列通項公式的求法、等差數列的定義及通項公式、數列的單調性,考查考生的邏輯思維能力、運算求解能力以及化歸與轉化思想、分類討論思想.18、(1);(2).【解析】

(1)由,利用余弦定理可得,結合可得結果;(2)由正弦定理,,利用三角形內角和定理可得,由三角形面積公式可得結果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.19、(1)見解析(2)不存在,見解析【解析】

(1)求出函數的導數,通過討論的范圍求出函數的單調區間即可;(2)求出函數的導數,結合導數的幾何意義,再令,轉化為方程有解問題,即可說明.【詳解】(1)函數的定義域為,所以當時,;,所以函數在上單調遞增當時,①當時,函數在上遞增②,顯然無增區間;③當時,,函數在上遞增,綜上當函數在上單調遞增.當時函數在上單調遞增;當時函數無單調遞增區間當時函數在上單調遞增(2)假設函數存在“中值相依切線”設是曲線上不同的兩個點,且則曲線在點處的切線的斜率為,.令,則,單調遞增,,故無解,假設不成立綜上,假設不成立,所以不存在“中值相依切線”【點睛】本題考查了函數的單調性,導數的幾何意義,考查導數的應用以及分類討論和轉化思想,屬于中檔題.20、(1)見解析;(2).【解析】

(1)先連接,根據線面平行的判定定理,即可證明結論成立;(2)在圖2中,過點作,垂足為,連接,,證明平面平面,得到點在底面上的投影必落在直線上,記為點在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數據求解,即可得出結果.【詳解】(1)連接,因為等腰梯形中(如圖1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點,為中點,易得:四邊形也為平行四邊形,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論