




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆甘肅省肅南縣一中高三第二次調研數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐中,為的中點,平面,,,則有下列四個結論:①若為的外心,則;②若為等邊三角形,則;③當時,與平面所成的角的范圍為;④當時,為平面內一動點,若OM∥平面,則在內軌跡的長度為1.其中正確的個數是().A.1 B.1 C.3 D.42.在平面直角坐標系xOy中,已知橢圓的右焦點為,若F到直線的距離為,則E的離心率為()A. B. C. D.3.已知復數滿足,且,則()A.3 B. C. D.4.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.55.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.66.已知在中,角的對邊分別為,若函數存在極值,則角的取值范圍是()A. B. C. D.7.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.8.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象9.已知,其中是虛數單位,則對應的點的坐標為()A. B. C. D.10.若數列為等差數列,且滿足,為數列的前項和,則()A. B. C. D.11.馬林●梅森是17世紀法國著名的數學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們為了紀念梅森在數論方面的這一貢獻,將形如2P﹣1(其中p是素數)的素數,稱為梅森素數.若執行如圖所示的程序框圖,則輸出的梅森素數的個數是()A.3 B.4 C.5 D.612.設遞增的等比數列的前n項和為,已知,,則()A.9 B.27 C.81 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數z1=1﹣2i,z2=a+2i(其中i是虛數單位,a∈R),若z1?z2是純虛數,則a的值為_____.14.,則f(f(2))的值為____________.15.若函數(R,)滿足,且的最小值等于,則ω的值為___________.16.齊王與田忌賽馬,田忌的上等馬優于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若,解關于的不等式;(2)若當時,恒成立,求實數的取值范圍.18.(12分)如圖,三棱柱ABC-A1B1C1中,側面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.19.(12分)已知函數.(1)若在上為單調函數,求實數a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.20.(12分)已知函數.(1)求函數的最小正周期以及單調遞增區間;(2)已知,若,,,求的面積.21.(12分)已知函數.(1)當時,解不等式;(2)設不等式的解集為,若,求實數的取值范圍.22.(10分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由線面垂直的性質,結合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質可判斷②錯誤;由線面角的定義和轉化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設與平面所成角為可得,設到平面的距離為由可得即有,當且僅當取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關系有關的命題的真假判斷,處理這類問題,可以用已知的定理或性質來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.2、A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時,通常是構造關于的方程或不等式,本題是一道容易題.3、C【解析】
設,則,利用和求得,即可.【詳解】設,則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復數的乘法法則的應用,考查共軛復數的應用.4、A【解析】
由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.5、C【解析】
根據列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數量積的運算,考查向量模的求法,屬于基礎題.6、C【解析】
求出導函數,由有不等的兩實根,即可得不等關系,然后由余弦定理可及余弦函數性質可得結論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導數與極值,考查余弦定理.掌握極值存在的條件是解題關鍵.7、A【解析】
作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.8、D【解析】
利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.9、C【解析】
利用復數相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.【點睛】本題考查復數的代數表示法及其幾何意義,考查復數相等的條件,是基礎題.10、B【解析】
利用等差數列性質,若,則求出,再利用等差數列前項和公式得【詳解】解:因為,由等差數列性質,若,則得,.為數列的前項和,則.故選:.【點睛】本題考查等差數列性質與等差數列前項和.(1)如果為等差數列,若,則.(2)要注意等差數列前項和公式的靈活應用,如.11、C【解析】
模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執行循環體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執行循環體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執行循環體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執行循環體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環,結束,故若執行如圖所示的程序框圖,則輸出的梅森素數的個數是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎題.12、A【解析】
根據兩個已知條件求出數列的公比和首項,即得的值.【詳解】設等比數列的公比為q.由,得,解得或.因為.且數列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數,∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數的概念和運算,屬于基礎題.14、1【解析】
先求f(1),再根據f(1)值所在區間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點睛】本題考查分段函數求值,考查對應性以及基本求解能力.15、1【解析】
利用輔助角公式化簡可得,由題可分析的最小值等于表示相鄰的一個對稱中心與一個對稱軸的距離為,進而求解即可.【詳解】由題,,因為,,且的最小值等于,即相鄰的一個對稱中心與一個對稱軸的距離為,所以,即,所以,故答案為:1【點睛】本題考查正弦型函數的對稱性的應用,考查三角函數的化簡.16、.【解析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數和所求事件包含的基本事件數.(1)基本事件總數較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區分排列與組合,以及計數原理的正確使用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用零點分段法將表示為分段函數的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當時,,由此可知,的解集為(2)當時,的最小值為和中的最小值,其中,.所以恒成立.當時,,且,不恒成立,不符合題意.當時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點睛】本小題主要考查絕對值不等式的解法,考查根據絕對值不等式恒成立求參數的取值范圍,考查分類討論的數學思想方法,屬于中檔題.18、(1)見解析(2)【解析】
(1)通過勾股定理得出,又,進而可得平面,則可得到,問題得證;(2)如圖,以為原點,,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因為平面,所以,又因為,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點,,,所在直線分別為軸,軸,軸,所以,平面的法向量,設平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.【點睛】本題考查空間垂直關系的證明,考查向量法求二面角的大小,考查學生計算能力,是中檔題.19、(1);(2)【解析】
(1)求導.根據單調,轉化為對恒成立求解(2)由(1)知,是的兩個根,不妨設,令.根據,確定,將轉化為.令,用導數法研究其單調性求最值.【詳解】(1)的定義域為,.因為單調,所以對恒成立,所以,恒成立,因為,當且僅當時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設,則.因為,所以t為關于a的減函數,所以..令,則.因為當時,在上為減函數.所以當時,.從而,所以在上為減函數.所以當時,.【點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.20、(1)最小正周期為,單調遞增區間為;(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,利用正弦型函數的周期公式可求得函數的最小正周期,解不等式可求得該函數的單調遞增區間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數的最小正周期為,由得,因此,函數的單調遞增區間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數的周期和單調區間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應用,考查計算能力,屬于中等題.21、(1)或;(2)【解析】
(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結果.(2)利用等價轉化的思想,可得不等式在恒成立,然后解出解集,根據集合間的包含關系,可得結果.【詳解】(1)當時,原不等式可化為.①當時,則,所以;②當時,則,所以;⑧當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應用,同時掌握等價轉化的思想,屬中檔題.22、(1)(2)【解析】
(1)因為,可得,即可求得答案;(2)分別設、的斜率為和,切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 備考專利代理人資格考試的試題及答案
- 西醫臨床個體化治療試題及答案
- 藥物開發流程詳解試題及答案
- 普法知識正式競賽試題及答案
- 江蘇省高考政治學科熱點專題訓練系列(成品油價稅費改革)
- 國土法考試試題及答案
- 科學管理健康學習筆記試題及答案
- 激光科研策略分析試題及答案
- 系統架構設計師考試邏輯推理題目及答案
- 藥品專利與市場競爭的關系試題及答案
- 2025年天津市河東區中考一模歷史試題(原卷版+解析版)
- 河南省南陽市新未來聯考2024-2025學年高一下學期4月期中物理試題(含解析)
- 《基于STM32的智能水質檢測系統的設計》9400字(論文)
- 2025年醫保政策考試:醫保患者權益保障知識競賽試題庫
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- 智慧樹知到《求職那點兒事-大學生就業指導》章節測試答案
- 土方工程投標文件
- 酒店流水單模版
- XR-WS1600型乳化液箱隨機圖冊
- SartoriusPB10pH計校正方法
- 本科畢業論文氯化聚氯乙烯樹脂的工藝研究及其供需現狀
評論
0/150
提交評論