云南省廣南縣第三中學2025屆高三沖刺模擬數學試卷含解析_第1頁
云南省廣南縣第三中學2025屆高三沖刺模擬數學試卷含解析_第2頁
云南省廣南縣第三中學2025屆高三沖刺模擬數學試卷含解析_第3頁
云南省廣南縣第三中學2025屆高三沖刺模擬數學試卷含解析_第4頁
云南省廣南縣第三中學2025屆高三沖刺模擬數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省廣南縣第三中學2025屆高三沖刺模擬數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.2.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統計圖如下面的折線圖.已知目前的月就醫費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元3.設全集為R,集合,,則A. B. C. D.4.函數的圖像大致為().A. B.C. D.5.若復數(是虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.7.已知函數,若時,恒成立,則實數的值為()A. B. C. D.8.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.49.一個盒子里有4個分別標有號碼為1,2,3,4的小球,每次取出一個,記下它的標號后再放回盒子中,共取3次,則取得小球標號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種10.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或11.函數在上單調遞減的充要條件是()A. B. C. D.12.已知函數的最小正周期為,為了得到函數的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.設實數滿足約束條件,則的最大值為______.15.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應從高三年級學生中抽取_____人.16.已知等比數列滿足公比,為其前項和,,,構成等差數列,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當與連線的斜率為時,直線的傾斜角為(1)求橢圓的標準方程;(2)若是以為直徑的圓上的任意一點,求證:18.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.19.(12分)以坐標原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,判斷直線為參數)與圓的位置關系.20.(12分)已知函數,.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數,當時,討論零點的個數.21.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.2、D【解析】

設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.3、B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結果.詳解:由題意可得:,結合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉化能力和計算求解能力.4、A【解析】

本題采用排除法:由排除選項D;根據特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數,則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數解析式較復雜的圖象的判斷;利用函數奇偶性、特殊值符號的正負等有關性質進行逐一排除是解題的關鍵;屬于中檔題.5、A【解析】

將整理成的形式,得到復數所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數的乘法運算,考查了復數對應的坐標.易錯點是誤把當成進行計算.6、B【解析】

設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,

,

當且僅當三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現了數形結合的數學思想,屬于中檔題.7、D【解析】

通過分析函數與的圖象,得到兩函數必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數與的圖象,因為時,恒成立,于是兩函數必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數的圖象的綜合應用和函數的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.8、A【解析】

由傾斜角的余弦值,求出正切值,即的關系,求出雙曲線的離心率.【詳解】解:設雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題9、C【解析】

由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標號均不為4的球的情況,進而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標號最大值是4的取法有種,故選:C【點睛】本題考查古典概型,考查補集思想的應用,屬于基礎題.10、B【解析】

根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.11、C【解析】

先求導函數,函數在上單調遞減則恒成立,對導函數不等式換元成二次函數,結合二次函數的性質和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數單調區間.求三角函數單調區間的兩種方法:(1)代換法:就是將比較復雜的三角函數含自變量的代數式整體當作一個角(或),利用基本三角函數的單調性列不等式求解;(2)圖象法:畫出三角函數的正、余弦曲線,結合圖象求它的單調區間.12、A【解析】

由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數的圖象與性質.【名師點睛】三角函數圖象變換方法:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直接根據集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.14、【解析】

試題分析:作出不等式組所表示的平面區域如圖,當直線過點時,最大,且考點:線性規劃.15、1.【解析】

先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應從高三年級學生中抽取的人數為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.16、0【解析】

利用等差中項以及等比數列的前項和公式即可求解.【詳解】由,,是等差數列可知因為,所以,故答案為:0【點睛】本題考查了等差中項的應用、等比數列的前項和公式,需熟記公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析.【解析】

(1)由短軸長可知,設,,由設而不求法作差即可求得,將相應值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時候,成立,當直線斜率存在時,設出直線方程,與橢圓聯立,結合中點坐標公式,弦長公式,得到與的關系,將表示出來,結合基本不等式求最值,證明最后的結果【詳解】解:(1)由已知,得由,兩式相減,得根據已知條件有,當時,∴,即∴橢圓的標準方程為(2)當直線斜率不存在時,,不等式成立.當直線斜率存在時,設由得∴,∴由化簡,得∴令,則當且僅當時取等號∴∵∴當且僅當時取等號綜上,【點睛】本題為直線與橢圓的綜合應用,考查了橢圓方程的求法,點差法處理多未知量問題,能夠利用一元二次方程的知識轉化處理復雜的計算形式,要求學生計算能力過關,為較難題18、(1);(2)【解析】

(1)由正弦定理可得,,化簡并結合,可求得三者間的關系,代入余弦定理可求得;(2)由(1)可求得,再結合三角形的面積公式,可求出,從而可求出答案.【詳解】(1)因為,所以,整理得:.因為,所以,所以.由余弦定理可得.(2)由(1)知,則,因為的面積是,所以,即,解得,則.故的周長為:.【點睛】本題考查了正弦定理、余弦定理在解三角形中的應用,考查了三角形面積公式的應用,屬于基礎題.19、直線與圓C相切.【解析】

首先把直線和圓轉換為直角坐標方程,進一步利用點到直線的距離的應用求出直線和圓的位置關系.【詳解】直線為參數),轉換為直角坐標方程為.圓轉換為直角坐標方程為,轉換為標準形式為,所以圓心到直線,的距離.直線與圓C相切.【點睛】本題考查的知識要點:參數方程極坐標方程和直角坐標方程之間的轉換,直線與圓的位置關系式的應用,點到直線的距離公式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.20、(1);(2)見解析.【解析】

(1)設切點坐標為,然后根據可解得實數的值;(2)令,,然后對實數進行分類討論,結合和的符號來確定函數的零點個數.【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數為增函數;當時,,此時,函數為減函數.,.①當,即當時,函數有一個零點;②當,即當時,函數有兩個零點;③當,即當時,函數有三個零點;④當,即當時,函數有兩個零點;⑤當,即當時,函數只有一個零點.綜上所述,當或時,函數只有一個零點;當或時,函數有兩個零點;當時,函數有三個零點.【點睛】本題考查了利用導數的幾何意義研究切線方程和利用導數研究函數的單調性與極值,關鍵是分類討論思想的應用,屬難題.21、(1)見證明;(2)【解析】

(1)取的中點,連接,要證平面平面,轉證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面的法向量,代入公式,即可得到結果.【詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,,在中,由正弦定理,得:,所以.以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,則,,,,,設平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【點睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.22、(1)(2)是為定值,的橫坐標為定值【解析】

(1)根據“直線垂直于軸時,四邊形的面積為1”列方程,由此求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論