2024年度人教版八年級數學上冊第十三章軸對稱同步練習試卷(附答案詳解)_第1頁
2024年度人教版八年級數學上冊第十三章軸對稱同步練習試卷(附答案詳解)_第2頁
2024年度人教版八年級數學上冊第十三章軸對稱同步練習試卷(附答案詳解)_第3頁
2024年度人教版八年級數學上冊第十三章軸對稱同步練習試卷(附答案詳解)_第4頁
2024年度人教版八年級數學上冊第十三章軸對稱同步練習試卷(附答案詳解)_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版八年級數學上冊第十三章軸對稱同步練習考試時間:90分鐘;命題人:數學教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規定位置上3、答案必須寫在試卷各個題目指定區域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,按以下步驟進行尺規作圖:(1)以點為圓心,任意長為半徑作弧,交的兩邊,分別于,兩點;(2)分別以點,為圓心,大于的長為半徑作弧,兩弧在內交于點;(3)作射線,連接,,.下列結論錯誤的是(

)A.垂直平分 B. C. D.2、下列電視臺標志中是軸對稱圖形的是(

)A. B.C. D.3、如圖,D是等邊的邊AC上的一點,E是等邊外一點,若,,則對的形狀最準確的是(

).A.等腰三角形 B.直角三角形 C.等邊三角形 D.不等邊三角形4、北京2022年冬奧會會徽如圖所示,組成會徽的四個圖案中是軸對稱圖形的是(

)A. B. C. D.5、等腰三角形的一個內角是80°,則它的底角是(

)A.50° B.80° C.50°或80° D.20°或80°6、已知點與點關于軸對稱,則點的坐標為(

)A. B. C. D.7、如圖,△ABC和△ECD都是等腰直角三角形,△ABC的頂點A在△ECD的斜邊DE上.下列結論:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正確的有()A.1個 B.2個 C.3個 D.4個8、如圖,在中,,,,則(

)A. B. C. D.9、以下四大通訊運營商的企業圖標中,是軸對稱圖形的是()A. B. C. D.10、如圖,在中,DE是AC的垂直平分線,,的周長為13cm,則的周長為(

)A.16cm B.13cm C.19cm D.10cm第Ⅱ卷(非選擇題70分)二、填空題(5小題,每小題4分,共計20分)1、如圖,將一張直角三角形紙片對折,使點B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.2、如圖,△ABC中,AB=BC,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF,若∠BAE=25°,則∠ACF=__________度.3、如圖,點與點關于直線對稱,則______.4、如圖,中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定是等腰三角形(用序號寫出一種情形):_______.5、點P關于x軸對稱點是,點P關于y軸對稱點是,則__________.三、解答題(5小題,每小題10分,共計50分)1、已知:在四邊形ABCD中,對角線AC、BD相交于點E,且AC⊥BD,作BF⊥CD,垂足為點F,BF與AC交于點C,∠BGE=∠ADE.(1)如圖1,求證:AD=CD;(2)如圖2,BH是△ABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于△ADE面積的2倍.2、如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.(1)求∠F的度數;(2)若CD=2,求DF的長.3、如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O.(1)求證:△ABC≌△DCB;(2)△OBC是何種三角形?證明你的結論.4、已知:如圖,,相交于點O,,.求證:(1);(2).5、如圖,在四邊形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的長.-參考答案-一、單選題1、D【解析】【分析】利用全等三角形的性質以及線段的垂直平分線的判定解決問題即可.【詳解】解:由作圖可知,在△OCD和△OCE中,,∴△OCD≌△OCE(SSS),∴∠DCO=∠ECO,∠1=∠2,∵OD=OE,CD=CE,∴OC垂直平分線段DE,故A,B,C正確,沒有條件能證明CE=OE,故選:D.【考點】本題考查了作圖-基本作圖,全等三角形的判定和性質,線段的垂直平分線的判定等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.2、A【解析】【分析】根據軸對稱圖形的定義進行判斷,即一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.【詳解】解:A選項中的圖形是軸對稱圖形,對稱軸有兩條,如圖所示;B、C、D選項中的圖形均不能沿某條直線折疊,直線兩旁的部分能夠互相重合,因此,它們都不是軸對稱圖形;故選:A.【考點】本題考查了軸對稱圖形的概念,其中正確理解軸對稱圖形的概念是解題關鍵.3、C【解析】【分析】先根據已知利用SAS判定△ABD≌△ACE得出AD=AE,∠BAD=∠CAE=60°,從而推出△ADE是等邊三角形.【詳解】解:∵三角形ABC為等邊三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等邊三角形.故選:C.【考點】本題考查了等邊三角形的判定和全等三角形的判定方法,掌握等邊三角形的判定和全等三角形的判定是本題的關鍵,做題時要對這些知識點靈活運用.4、D【解析】【分析】根據軸對稱圖形的定義判斷即可【詳解】A,B,C都不是軸對稱圖形,故不符合題意;D是軸對稱圖形,故選D.【考點】本題考查了軸對稱圖形的定義,準確理解定義是解題的關鍵.5、C【解析】【分析】先分情況討論:80°是等腰三角形的底角或80°是等腰三角形的頂角,再根據三角形的內角和定理進行計算.【詳解】解:當80°是等腰三角形的頂角時,則頂角就是80°,底角為(180°80°)=50°;當80°是等腰三角形的底角時,則頂角是180°80°×2=20°.∴等腰三角形的底角為50°或80°;故選:C.【考點】本題考查了等腰三角形的性質及三角形的內角和定理;若題目中沒有明確頂角或底角的度數,做題時要注意分情況進行討論,這是十分重要的,也是解答問題的關鍵.6、B【解析】【分析】根據關于軸對稱的性質:橫坐標相等,縱坐標互為相反數,即可得解.【詳解】由題意,得與點關于軸對稱點的坐標是,故選:B.【考點】此題主要考查關于軸對稱的點坐標的求解,熟練掌握,即可解題.7、C【解析】【分析】根據等腰直角三角形的性質得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,則可根據“SAS”證明△ACE≌△BCD,于是可對①進行判斷;利用三角形外角性質得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,則可得對②進行判斷;利用CE=CD和三角形三邊之間的關系可對③進行判斷;根據△ACE≌△BCD得到∠BDC=∠E=45°,則可對④進行判斷.【詳解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正確;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正確;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③錯誤;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB為直角三角形,所以④正確.故選:C.【考點】本題是考查了全等三角形的判定和性質,等腰直角三角形的性質,直角三角形的判定與性質等知識,熟練掌握全等三角形的判定與性質和等腰直角三角形的性質是解題的關鍵.8、D【解析】【分析】先根據等腰三角形的性質得到∠B的度數,再根據平行線的性質得到∠BCD.【詳解】解:∵AB=AC,∠A=40°,∴∠B=∠ACB=70°,∵CD∥AB,∴∠BCD=∠B=70°,故選D.【考點】本題考查了等腰三角形的性質和平行線的性質,掌握等邊對等角是關鍵,難度不大.9、D【解析】【分析】根據軸對稱圖形的定義(在平面內沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形)進行判斷即可得.【詳解】解:根據軸對稱圖形的定義判斷可得:只有D選項符合題意,故選:D.【考點】題目主要考查軸對稱圖形的判斷,理解軸對稱圖形的定義是解題關鍵.10、C【解析】【分析】根據線段垂直平分線性質得出,求出AC和的長,即可求出答案.【詳解】解:∵DE是AC的垂直平分線,,∴,,∵的周長為13cm,∴,∴,∴的周長為,故選:C.【考點】考查垂直平分線的性質,三角形周長問題,解題的關鍵是掌握垂直平分線的性質.二、填空題1、18【解析】【分析】【詳解】解:根據折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.2、70【解析】【分析】先利用HL證明△ABE≌△CBF,可證∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【詳解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案為70.【考點】本題考查了等腰直角三角形的性質,全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解題的關鍵.3、-5【解析】【分析】根據點與點關于直線對稱求得a,b的值,最后代入求解即可.【詳解】解:∵點與點關于直線對稱∴a=-2,,解得b=-3∴a+b=-2+(-3)=-5故答案為-5.【考點】本題考查了關于y=-1對稱點的性質,根據對稱點的性質求得a、b的值是解答本題的關鍵.4、①③或②③【解析】【分析】已知①③條件,先證△BEO≌△CDO,再證明∠ABC=∠ACB最后得到△ABC是等腰三角形;已知②③條件可證明△BEO≌△CDO,再證明△ABC是等腰三角形.【詳解】解:①③或②③.由①③證明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD.∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.因此△ABC是等腰三角形.由②③證明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EOB=∠DOC,∠BEO=∠CDO,BE=CD,∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.∴△ABC是等腰三角形.故答案為:①③或②③.【考點】本題考查了全等三角形的判定與性質、等腰三角形的判定;其中掌握用“AAS”判定兩個三角形全等和用“等角對等邊”判定三角形為等腰三角形是解決本題的關鍵.5、1【解析】【分析】根據關于坐標軸的對稱點的坐標特征,求出a,b的值,即可求解.【詳解】∵點P關于x軸對稱點是,∴P(a,-2),∵點P關于y軸對稱點是,∴b=-2,a=3,∴1,故答案是:1.【考點】本題主要考查關于坐標軸對稱的點的坐標特征,熟練掌握“關于x軸對稱的兩點,橫坐標相等,縱坐標互為相反數;關于y軸對稱的兩點,橫坐標互為相反數,縱坐標相等”是解題的關鍵.三、解答題1、(1)證明見解析;(2)△ACD、△ABE、△BCE、△BHG.【解析】【詳解】分析:(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根據∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)設DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,據此知S△ADC=2a2=2S△ADE,證△ADE≌△BGE得BE=AE=2a,再分別求出S△ABE、S△ACE、S△BHG,從而得出答案.詳解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)設DE=a,則AE=2DE=2a,EG=DE=a,∴S△ADE=AE×DE=×2a×a=a2,∵BH是△ABE的中線,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,則S△ADC=AC?DE=?(2a+2a)?a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE?BE=?(2a)?2a=2a2,S△ACE=CE?BE=?(2a)?2a=2a2,S△BHG=HG?BE=?(a+a)?2a=2a2,綜上,面積等于△ADE面積的2倍的三角形有△ACD、△ABE、△BCE、△BHG.點睛:本題主要考查全等三角形的判定與性質,解題的關鍵是掌握等腰三角形的判定與性質及全等三角形的判定與性質.2、(1)30°;(2)4.【解析】【分析】(1)根據平行線的性質可得∠EDC=∠B=60°,根據三角形內角和定理即可求解;(2)易證△EDC是等邊三角形,再根據直角三角形的性質即可求解.【詳解】(1)∵△ABC是等邊三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等邊三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【考點】本題主要考查了運用三角形的內角和算出角度,并能判定等邊三角形,會運用含30°角的直角三角形的性質.3、(1)見解析(2)等腰三角形,證明見解析【解析】【分析】(1)利用HL公理證明Rt△ABC≌Rt△DCB;(2)利用Rt△ABC≌Rt△DCB證明∠ACB=∠DBC,從而證明△OBC是等腰三角形.(1)證明:在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論