




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆甘肅省白銀市靖遠第一中學高二上數學期末學業質量監測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.經過點且圓心是兩直線與的交點的圓的方程為()A. B.C. D.2.下列數列中成等差數列的是()A. B.C. D.3.拋物線的焦點到準線的距離是A.2 B.4C. D.4.已知條件,條件表示焦點在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件5.集合,則集合A的子集個數為()A.2個 B.4個C.8個 D.16個6.從2,4中選一個數字,從1,3,5中選兩個數字,組成無重復數字的三位數的個數為()A.48 B.36C.24 D.187.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數表選取3個個體,選取方法是從隨機數表第1行的第5列和第6列數字開始由左到右依次選取兩個數字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.148.已知數列的通項公式為,按項的變化趨勢,該數列是()A.遞增數列 B.遞減數列C.擺動數列 D.常數列9.的二項展開式中,二項式系數最大的項是第()項.A.6 B.5C.4和6 D.5和710.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.直線過雙曲線:的右焦點,在第一、第四象限交雙曲線兩條漸近線分別于P,Q兩點,若∠OPQ=90°(O為坐標原點),則OPQ內切圓的半徑為()A. B.C.1 D.12.設為等差數列的前項和,若,則的值為()A.14 B.28C.36 D.48二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準線方程是______14.若函數恰有兩個極值點,則k的取值范圍是______15.《周髀算經》是中國最古老的天文學和數學著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣的日影子長依次成等差數列,若冬至、立春、春分的日影子長的和是37.5尺,芒種的日影子長為4.5尺,則立夏的日影子長為___________尺.16.某校對全校共1800名學生進行健康調查,選用分層抽樣法抽取一個容量為200的樣本,已知女生比男生少抽了20人,則該校的女生人數應是__________人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓上的點到橢圓焦點的最大距離為3,最小距離為1(1)求橢圓的標準方程;(2)已知,分別是橢圓的左右頂點,是橢圓上異于,的任意一點,直線,分別交軸于點,,求的值18.(12分)已知橢圓的焦點與雙曲線的焦點相同,且D的離心率為.(1)求C與D的方程;(2)若,直線與C交于A,B兩點,且直線PA,PB的斜率都存在.①求m的取值范圍.②試問這直線PA,PB的斜率之積是否為定值?若是,求出該定值;若不是,請說明理由.19.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為6.(1)求拋物線的方程;(2)若不過原點的直線與拋物線交于A、B兩點,且,求證:直線過定點并求出定點坐標.20.(12分)在平面直角坐標系中,動點到點的距離和它到直線的距離之比為.動點的軌跡為曲線.(1)求曲線的方程,并說明曲線是什么圖形;(2)已知曲線與軸的交點分別為,點是曲線上異于的一點,直線的斜率為,直線的斜率為,求證:為定值.21.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點,M是棱PC的中點,,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值22.(10分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)若,分別為橢圓的上,下頂點,過點且斜率為的直線交橢圓于另一點(異于橢圓的右頂點),交軸于點,直線與直線相交于點.求證:直線的斜率為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出圓心坐標和半徑后,直接寫出圓的標準方程.【詳解】由得,即所求圓的圓心坐標為.由該圓過點,得其半徑為1,故圓的方程為.故選:B.【點睛】本題考查了圓的標準方程,屬于基礎題.2、C【解析】利用等差數列定義,逐一驗證各個選項即可判斷作答.【詳解】對于A,,A不是等差數列;對于B,,B不是等差數列;對于C,,C是等差數列;對于D,,D不是等差數列.故選:C3、D【解析】因為拋物線方程可化為,所以拋物線的焦點到準線的距離是,故選D.考點:1、拋物線的標準方程;2、拋物線的幾何性質.4、A【解析】根據條件,求得a的范圍,根據充分、必要條件的定義,即可得答案.【詳解】因為條件表示焦點在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A5、C【解析】取,再根據的周期為4,可得,即可得解.【詳解】因為,所以.時,,時,,時,,時,,所以集合,所以的子集的個數為,故選:C.6、B【解析】直接利用乘法分步原理分三步計算即得解.【詳解】從中選一個數字,有種方法;從中選兩個數字,有種方法;組成無重復數字的三位數,有個.故選:B7、D【解析】由隨機數表法抽樣原理即可求出答案.【詳解】根據題意,依次讀出的數據為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.8、B【解析】分析的單調性,即可判斷和選擇.【詳解】因為,顯然隨著的增大,是遞增的,故是遞減的,則數列是遞減數列.故選:B.9、A【解析】由二項展開的中間項或中間兩項二項式系數最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數最大,易知當r=5時,最大,即二項展開式中,二項式系數最大的為第6項.故選:A10、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.11、B【解析】根據漸近線的對稱性,結合銳角三角函數定義、正切的二倍角公式、直角三角形內切圓半徑公式進行求解即可.【詳解】由雙曲線標準方程可知:,雙曲線的漸近線方程為:,因此,因為∠OPQ=90°,所以三角形是直角三角形,,而,解得:,由雙曲線漸近線的對稱性可知:,于是有,在直角三角形中,,由勾股定理可知:,設OPQ內切圓的半徑為,于是有:,即,故選:B【點睛】關鍵點睛:利用三角形內切圓的性質是解題的關鍵.12、D【解析】利用等差數列的前項和公式以及等差數列的性質即可求出.【詳解】因為為等差數列的前項和,所以故選:D【點睛】本題考查了等差數列的前項和公式的計算以及等差數列性質的應用,屬于較易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得p=4,所以準線方程,填14、【解析】求導得有兩個極值點等價于函數有一個不等于1的零點,分離參數得,令,利用導數研究的單調性并作出的圖象,根據圖象即可得出k的取值范圍【詳解】函數的定義域為,,令,解得或,若函數有2個極值點,則函數與圖象在上恰有1個橫坐標不為1的交點,而,令,令或,故在和上單調遞減,在上單調遞增,又,如圖所示,由圖可得.故答案為:15、【解析】利用等差數列的通項公式求出首項和公差,然后求出其中某一項.【詳解】解:由題意得從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣的日影子長依次成等差數列,設其公差為,解得故立夏的日影子長為尺.故答案為:16、810【解析】分析:首先確定抽取的女生人數,然后由分層抽樣比即可確定女生的人數.詳解:設抽取的女生人數為,則:,解得:,則抽取的女生人數為人,抽取的男生人數為人,據此可知該校女生人數應是人.點睛:進行分層抽樣的相關計算時,常利用以下關系式巧解:(1);(2)總體中某兩層的個體數之比=樣本中這兩層抽取的個體數之比三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)-1.【解析】(1)根據橢圓的性質進行求解即可;(2)根據直線的方程,結合平面向量數量積的坐標表示公式進行求解即可.【小問1詳解】由題意得,,,所以,橢圓.【小問2詳解】由題意可知,,設,則,直線,直線分別令得,,,.【點睛】關鍵點睛:運用平面向量數量積的坐標表示公式進行求解是解題的關鍵.18、(1)C:;D:;(2)①且;②見解析.【解析】(1)根據D的離心率為,求出從而求出雙曲線的焦點,再由橢圓的焦點與雙曲線的焦點相同,即可求出,即可求出C與D的方程;(2)①根據題意容易得出,然后聯立方程,消元,利用即可求出m的取值范圍;②設,由①得:,計算出,判斷其是否為定值即可.【詳解】解:(1)因為D的離心率為,即,解得:,所以D的方程為:;焦點坐標為,又因橢圓的焦點與雙曲線的焦點相同,所以,所以,所以C的方程為:;(2)①如圖:因為直線與C交于A,B兩點,且直線PA,PB的斜率都存在,所以,聯立,消化簡得:,所以,解得,所以且;②設,由①得:,,所以,故直線PA,PB的斜率之積不是是定值.【點睛】本題考查了求橢圓與雙曲線的方程、直線與橢圓的位置關系及橢圓中跟定直有關的問題,難度較大.19、(1)(2)證明見解析,定點坐標為(8,0).【解析】(1)根據拋物線的定義,即可求出結果;(2)由題意直線方程可設為,將其與拋物線方程聯立,再將轉化為,根據韋達定理,化簡求解,即可求出定點.【小問1詳解】解:拋物線的頂點在原點,焦點在軸上,且拋物線上有一點,設拋物線的方程為,到焦點的距離為6,即有點到準線的距離為6,即解得,即拋物線的標準方程為;【小問2詳解】證明:由題意知直線不能與軸平行,故直線方程可設為,與拋物線聯立得,消去得,設,則,則,,由,可得,所以,即,亦即,又,解得,所以直線方程為,易得直線過定點.20、(1),曲線是以為焦點的橢圓;(2)證明見解析.【解析】(1)由題可得,即求;(2)利用斜率公式及橢圓方程計算即得.【小問1詳解】設點坐標為,根據題意,得,左右同時平方,得,整理得,,即,所以曲線的方程是,曲線是以為焦點的橢圓.【小問2詳解】由題意得,設的坐標是,因為點在曲線上,所以,因為,所以,所以為定值.21、(1)證明見解析(2)【解析】(1)根據等腰三角形可得,再由面面垂直的性質得出線面垂直,即可求證;(2)建立空間直角坐標系,利用向量法求線面角.【小問1詳解】因為Q為AD的中點,,所以,又因為平面底面ABCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標系,如圖,根據題意,則,,,,,由M是棱PC的中點可知,,設平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個法向量為,所以,所以直線PB與平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邵陽市重點中學2024-2025學年初三5月畢業班模擬考試數學試題含解析
- 江蘇省鹽城市響水實驗、一中學2025屆初三下學期零診模擬生物試題含解析
- 廊坊衛生職業學院《成衣制作工藝》2023-2024學年第二學期期末試卷
- 江西師范大學科學技術學院《prote軟件設計》2023-2024學年第二學期期末試卷
- 延壽縣2025屆數學四年級第二學期期末質量檢測模擬試題含解析
- 天府新區航空旅游職業學院《歐美設計規范釋義一雙語》2023-2024學年第二學期期末試卷
- 天津石油職業技術學院《珠寶專業英語》2023-2024學年第二學期期末試卷
- 塔里木職業技術學院《測井資料解釋課程設計》2023-2024學年第一學期期末試卷
- 遼寧稅務高等專科學校《影像診斷學》2023-2024學年第二學期期末試卷
- 文山壯族苗族自治州馬關縣2024-2025學年數學三下期末綜合測試模擬試題含解析
- 美國學生閱讀技能訓練
- 網絡安全服務項目服務質量保障措施(實施方案)
- 生產加工型小微企業安全管理考試(含答案)
- 青少年科技創新比賽深度分析
- 世界近代武器革新圖鑒(1722-1900)英國篇
- 安標受控件采購管理制度
- 亞低溫的治療與護理
- 危險化學品企業設備完整性 第2部分 技術實施指南 編制說明
- 防高墜自查自糾臺賬
- GB/T 4437.1-2023鋁及鋁合金熱擠壓管第1部分:無縫圓管
- 市政工程消耗量定額 zya1-31-2015
評論
0/150
提交評論