吉林省長春市文曲星名校2025屆數學高三第一學期期末經典模擬試題含解析_第1頁
吉林省長春市文曲星名校2025屆數學高三第一學期期末經典模擬試題含解析_第2頁
吉林省長春市文曲星名校2025屆數學高三第一學期期末經典模擬試題含解析_第3頁
吉林省長春市文曲星名校2025屆數學高三第一學期期末經典模擬試題含解析_第4頁
吉林省長春市文曲星名校2025屆數學高三第一學期期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省長春市文曲星名校2025屆數學高三第一學期期末經典模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.2.已知函數()的最小值為0,則()A. B. C. D.3.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.4.劉徽是我國魏晉時期偉大的數學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.5.已知函數在區間上恰有四個不同的零點,則實數的取值范圍是()A. B. C. D.6.已知復數滿足(是虛數單位),則=()A. B. C. D.7.復數滿足為虛數單位),則的虛部為()A. B. C. D.8.已知,則,不可能滿足的關系是()A. B. C. D.9.設遞增的等比數列的前n項和為,已知,,則()A.9 B.27 C.81 D.10.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.11.某設備使用年限x(年)與所支出的維修費用y(萬元)的統計數據分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年12.若集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在直角梯形中,,、分別是、上的點,,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:①平面;②四點、、、可能共面;③若,則平面平面;④平面與平面可能垂直.其中正確的是__________.14.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.15.《九章算術》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連接,則三棱錐的體積的最大值為__________.16.各項均為正數的等比數列中,為其前項和,若,且,則公比的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,判斷在上的單調性并加以證明;(2)若,,求的取值范圍.18.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數存在,求的值;若不存在,說明理由.設正數等比數列的前項和為,是等差數列,__________,,,,是否存在正整數,使得成立?19.(12分)在平面直角坐標系xOy中,曲線的參數方程為(為參數).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.20.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.21.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.22.(10分)已知直線的參數方程為(,為參數),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經過點,求直線被曲線截得的線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設出A,B的坐標,利用導數求出過A,B的切線的斜率,結合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質,考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.2、C【解析】

設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數的最小值為0,作出函數的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數的圖像與性質,考查轉化思想,考查數形結合思想,屬于中檔題.3、D【解析】

連接,根據題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎題4、C【解析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數形結合的思想和運算求解的能力,屬于基礎題.5、A【解析】

函數的零點就是方程的解,設,方程可化為,即或,求出的導數,利用導數得出函數的單調性和最值,由此可根據方程解的個數得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數解,故在區間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數的零點.考查轉化與化歸思想,函數零點轉化為方程的解,方程的解再轉化為研究函數的性質,本題考查了學生分析問題解決問題的能力.6、A【解析】

把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.7、C【解析】

,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復數的除法運算,考查學生的基本運算能力,是一道基礎題.8、C【解析】

根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題9、A【解析】

根據兩個已知條件求出數列的公比和首項,即得的值.【詳解】設等比數列的公比為q.由,得,解得或.因為.且數列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.10、A【解析】

本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.11、D【解析】

根據樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.12、B【解析】

根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、①③【解析】

連接、交于點,取的中點,證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設平面與平面垂直,利用面面垂直的性質定理可判斷命題④的正誤.綜合可得出結論.【詳解】對于命題①,連接、交于點,取的中點、,連接、,如下圖所示:則且,四邊形是矩形,且,為的中點,為的中點,且,且,四邊形為平行四邊形,,即,平面,平面,平面,命題①正確;對于命題②,,平面,平面,平面,若四點、、、共面,則這四點可確定平面,則,平面平面,由線面平行的性質定理可得,則,但四邊形為梯形且、為兩腰,與相交,矛盾.所以,命題②錯誤;對于命題③,連接、,設,則,在中,,,則為等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、為平面內的兩條相交直線,所以,平面,平面,平面平面,命題③正確;對于命題④,假設平面與平面垂直,過點在平面內作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,顯然與不垂直,命題④錯誤.故答案為:①③.【點睛】本題考查立體幾何綜合問題,涉及線面平行、面面垂直的證明、以及點共面的判斷,考查推理能力,屬于中等題.14、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.15、【解析】

由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當AE=EF=2時,△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當且僅當AE=EF=2時,取“=”,此時△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點睛】本題主要考查直線與平面垂直的判定,基本不等式的應用,同時考查了空間想象能力、計算能力和邏輯推理能力,屬于中檔題.16、【解析】

將已知由前n項和定義整理為,再由等比數列性質求得公比,最后由數列各項均為正數,舍根得解.【詳解】因為即又等比數列各項均為正數,故故答案為:【點睛】本題考查在等比數列中由前n項和關系求公比,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在為增函數;證明見解析(2)【解析】

(1)令,求出,可推得,故在為增函數;(2)令,則,由此利用分類討論思想和導數性質求出實數的取值范圍.【詳解】(1)當時,.記,則,當時,,.所以,所以在單調遞增,所以.因為,所以,所以在為增函數.(2)由題意,得,記,則,令,則,當時,,,所以,所以在為增函數,即在單調遞增,所以.①當,,恒成立,所以為增函數,即在單調遞增,又,所以,所以在為增函數,所以所以滿足題意.②當,,令,,因為,所以,故在單調遞增,故,即.故,又在單調遞增,由零點存在性定理知,存在唯一實數,,當時,,單調遞減,即單調遞減,所以,此時在為減函數,所以,不合題意,應舍去.綜上所述,的取值范圍是.【點睛】本題主要考查了導數的綜合應用,利用導數研究函數的單調性、最值和零點及不等式恒成立等問題,考查化歸與轉化思想、分類與整合思想、函數與方程思想,考查了學生的邏輯推理和運算求解能力,屬于難題.18、見解析【解析】

根據等差數列性質及、,可求得等差數列的通項公式,由即可求得的值;根據等式,變形可得,分別討論取①②③中的一個,結合等比數列通項公式代入化簡,檢驗是否存在正整數的值即可.【詳解】∵在等差數列中,,∴,∴公差,∴,∴,若存在正整數,使得成立,即成立,設正數等比數列的公比為的公比為,若選①,∵,∴,∴,∴,∴當時,滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數解,∴不存在正整數使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當時,滿足成立.【點睛】本題考查了等差數列通項公式的求法,等比數列通項公式及前n項和公式的應用,遞推公式的簡單應用,補充條件后求參數的值,屬于中檔題.19、(1);(2)【解析】

(1)先將曲線的參數方程化為普通方程,再將普通方程化為極坐標方程即可.(2)將和的極坐標方程聯立,求得兩個曲線交點的極坐標,即可由極坐標的含義求得的面積.【詳解】(1)曲線的參數方程為(α為參數),消去參數的的直角坐標方程為.所以的極坐標方程為(2)解方程組,得到.所以,則或().當()時,,當()時,.所以和的交點極坐標為:,.所以.故的面積為.【點睛】本題考查了參數方程與普通方程的轉化,直角坐標方程與極坐標的轉化,利用極坐標求三角形面積,屬于中檔題.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論