




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
GTI5GandCloudRobotics
WhitePaper
1
PAGE
6
Confidentiality:ThisdocumentmaycontaininformationthatisconfidentialandaccesstothisdocumentisrestrictedtothepersonslistedintheConfidentialLevel.Thisdocumentmaynotbeused,disclosedorreproduced,inwholeorinpart,withoutthepriorwrittenauthorizationofGTI,andthosesoauthorizedmayonlyusethisdocumentforthepurposeconsistentwiththeauthorization.GTIdisclaimsanyliabilityfortheaccuracyorcompletenessortimelinessoftheinformationcontainedinthisdocument.Theinformationcontainedinthisdocumentmaybesubjecttochangewithoutpriornotice.
DocumentHistory
Date
Meeting#
Version#
RevisionContents
DD-MM-YYYY
NA
DD-MM-YYYY
DD-MM-YYYY
DD-MM-YYYY
DD-MM-YYYY
CloudRobotics:Trends,Technologies,
Communications
Abstract
Cloudrobotsarecontrolledfroma“brain”inthecloud.Thebrain,locatedinadatacenter,makesuseofArtificialIntelligenceandotheradvancedsoftwaretechnologiestodealwithtasksthatintraditionalrobotswereundertakenbyalocal,on-boardcontroller.Comparedtolocalrobots,cloudrobotswillgeneratenewvaluechains,newtechnologies,newarchitectures,newexperiencesandnewbusinessmodels,thiswhitepaperwillexploretheseaspects.
Introduction
Cloudroboticsisarelativelyrecentconcept.Earlyworkdatesbackto2010,whentheEuropeanCommission’sRoboEarthiprojectbegan.Thisaimedtoestablisha“WorldWideWebforrobots”.RoboEarthandlaterprojectssuchasRapyutaiiandRobohowiiiformalizedthebasicconceptandtechnologies,andarestillinfluencingcloudroboticresearchtoday.
Therearethreecoreadvantagesofcloudrobotscomparedtostand-alonerobots:
InformationsharingManycloudrobotscanbecontrolledfromonebrain,andthebraincanaccumulatevisual,verbal,andenvironmentaldatafromallconnectedrobots.Intelligencederivedfromthisdatacanbeusedbyalltherobotscontrolledbythebrain.Aswithothercloudservices,informationcollectedandprocessedoneachrobotwillalwaysbeup-to-dateandbacked-upsafely.Developersalsobenefit,astheycanbuildreusablesolutionsforallcloud-connectedrobots.
OffloadedcomputationSomerobottasksrequiremorecomputationalpowerthanalocalcontrollercaneconomicallydeliver.Offloading
totheclouddata-intensivetaskssuchasvoiceandimagerecognition,voicegeneration,environmentalmappingandmotionplanningwilllowerthehardwarerequirementsandpowerconsumptionofrobots,makingthemlighter,smaller,andcheaper.
CollaborationCloudrobotsdonotneedtoworkalone.Usingthecloudasacommonmedium,tworobotscanworktogethertocarryanobjecttooheavyforone,oragroupofsimpleworkerrobotscanworkwithalocalmap,providedbyaleaderrobotwithcostlysensors.
Figure1:Largescaledatacollectionwithanarrayofrobots(14robotsaresharingexperiencesofmachinelearningforgrasping)[Source:
/2016/03/deep-learning-for-robots-learning-from.html]
DistributedversionofAlphaGoexploited40searchthreads,1202CPUsand176GPUsx,noordinaryrobotcaninstallinside.Butcloudrobotcanmakeuseofit.
Applicationsforcloudrobots
Usingcloudresourcesempowersrobotsandgivesthemnewcapabilitiesinmanyareas:
Intelligentvisualprocessing:imageclassification,targetdetection,imagesegmentation,imagedescription,characterrecognition.
Naturallanguageprocessing:semanticunderstandingbasedondepthlearning,accurateidentificationofuserintent,multi-intentionanalysis,emotionalanalysis.Makesuseofapowerfulbackgroundknowledgebase.
Facialrecognition:facedetectionalgorithmbasedondepthlearning;Inthereal-timevideo
streamtoaccuratelydetecttheface;Anyfacemaskandreal-timedetectionundertheviewingangle;Toovercome:thesideface,halfobscured,blurredface;
Extensionfromcurrentrobotapplications:outdoormapnavigation,indoorpositioningandnavigation,typicalproductidentification,universalitemidentification,environmentalunderstanding,textreading,voiceprompts.
Theapplicationsthatwillemergeforcloudrobotsareofmanykinds;someareemergingnow–othersareatanearlystageofdevelopment.
Logistics
Amazon,Jingdong,S.F.Expressandothercompanieshavedeployedlogisticsrobotsystems.ThewheeledAGV(AutomatedGuidedVehicle)isthemaintypeoflogisticsrobot(thoughlogisticscompaniesarealsotriallingtheuseofaerialdrones).Byconnectingtothecloud,AGVscanachieveunifiedscheduling(whereallAGVsareworkingasasinglesystemformaximumefficiency).Inaddition,AGVscanbeequippedwithmachinevisionsystems,andvideocanbetransmittedtocloud-basedsystemstohandleavarietyofsituationsontheroad.EventuallythiswillresultinAGVscomingoutofcontrolledareastotakeonmorework,includinginpublicplacesfordeliveryofparcelsorfood.
Securityandsurveillance
Inpublicplaces,cloudrobotscanperform24/7securityinspections,replacingsecuritypersonnel.Thecloudrobotwillcollectvideoandstillimagesandsendthemtothepublicsafetycloudforreal-timeidentificationofsuspiciouspeopleand
Personalassistanceandcare
Providingpersonalassistanceandcarefortheelderlyiswidelyconsideredthe“nextbigthing”inrobotics.Thepowerofthecloudmakescarerobotsbehavemorelikehumans.Theycancarryoutreal-timemonitoringofpersonalhealth,helppeoplemoveabout,andcompletehousework.AnexampleofthistypeofrobotisSoftbank’sRomeo.
activity.SuchrobotsarealreadybeingusedatShenzhenairportinChina.
Guidance
Inpublicplacessuchasenterprises,banksandhospitals,robotslikeSoftbank’sPepperarebeingusedtoguidevisitors.TheyarealsobeingusedtodeliverretailservicesbycompaniesincludingNestle,YamadaElectricandMizuhoBank.Cloudrobotscanmakeuseofavastknowledgedatabaseinthecloud,andcommunicateusingnaturallanguage;theycanevenrecogniseandrespondtopeople’sexpressionsusingcloud-AI-basedimageanalysis,toimprovetheuseexperience.
Education,entertainmentandcompanionship
Inrecentyears,theapplicationofmachinevisionandartificialintelligencehasresultedinthedevelopmentofmanyrobotsforeducationandentertainment.ExamplesincludeJibo,AsusZenbo,andSoftbankNao.Theserobotshaveahumanoidappearanceandtheabilitytousenaturallanguage.Theycandownloadcontentfromthecloudtoprovideeducationandentertainmentservices.
Figure2:Cloud-poweredsmartdevicesandcommunicationrobots[Source:Softbank]
Markettrends
Robotscanbecategorisedasindustrialrobotsorservicerobots,accordingtotheiruse.Service
226.2$bn
Accordingtomarketanalyst
robotscanbefurtherdividedintoprofessional
servicesrobotsandpersonalhomeservicerobots.Professionalservicerobotsareusedinthefieldsofmedicine,construction,underwaterengineering,logistics,defenceandsafety.Personalhomeservicerobotsareusedtoundertakehousework,providecompanionshipandpersonalassistance,andarealsousedinotherfields.
companyTractica,thevalueoftheglobalrobotmarketwillgrowfrom$34.1billionin2016to
$226.2billionin2021,withacompoundannualgrowthrate(CAGR)of46%invalueterms.Mostofthegrowthwillbeinthemarketfornon-industrialrobotsIX.
2bnOneofthemajordriversofthismarketgrowthistheagingpopulation.Therearefewerworking-agepeopletotakecareoftheincreasing
numbersoftheelderly.TheUNhasforecastthatby205021%oftheglobalpopulationwillbeovertheageof60–atotalofover2billionpeople.
Robotshavearoletoplayhere.Inaddition,industrialautomationcontinuestodevelopatarapidpace,withinitiativessuchasIndustry4.0inGermanyandMadeinChina2025.
AdvancesintechnologiesincludingArtificialIntelligence,theInternetofThingsandwirelesscommunicationsaremakingrobotsmorecapable.Theycannowidentifytheirsurroundings,calibratetheirposition,plantrajectories,andusenaturalinterfacestointeractwithhumans.Therehavebeenincreasesinthecapabilitiesofrobotsusedinindustry,agriculture,logisticsandeducation.Therapidriseintheuseofdronesisalsoevidenceoftheincreasingcapabilitiesofrobots.
CloudrobotswillsoonbecomethenormCloud-basedAIandconnectivitywillshapethedevelopmentoftherobotmarketsignificantlyin
thenextfewyears.Thesetechniqueshavealreadybeguntochangethewaythatpeopleinteract:technologygiantshavedevelopedAI-basedsystemsthatarebecomingwidelyused.ExamplesincludeGoogleCloudSpeechAPI,AmazonAlexa,BaiduDuer,IBMWatson,AppleSiriandMicrosoftCortana.
12%AccordingtoHuaweiGIV,by2025theuseofmobileconnectivityandartificialintelligencewillresultinrobotpenetrationinthefamilyof12%;intelligentrobotswillchangethefaceofallindustriesinthesamewaythattheautomotiveindustrywastransformativeinthe20thcentury.
GTIcloudroboticsworkinggroupresearchforecaststhatby2020connectedrobotswillaccountfor90%ofallrobots,andabout20millionnewconnectionswillbeneededeveryyeartosupporttheirday-to-dayoperations.
GTIcloudroboticsworkinggrouphasexaminedtheroboticsmarketindetail.Itsworksuggeststhatby2020theproportionofconnectedrobotsgloballywillbe90%,andabout20millionnewconnectionswillbeneededeveryyeartosupporttheirday-to-dayoperations.Figures3-7showprojectionsforsalesofconnectedrobots.
Figure3:Connectedrobotsales2016-2020(million)[Source:GTIcloudroboticsworkinggroup]
Figure4:Connectedlogisticssystemrobots(thousand)[Source:GTIcloudroboticsworkinggroup]
Figure5Connecteddomesticrobots(million)
[Source:GTIcloudroboticsworkinggroup] 8
PAGE
10
Figure6:Connectedentertainmentrobots(million)
[Source:GTIcloudroboticsworkinggroup]
Figure7Connecteddisabledcareassistantrobot(thousand)[Source:GTIcloudroboticsworkinggroup]
Inthenextfewyears,domesticrobotsandrecreationalrobotswilloccupymostoftheshipmentsofconnectedrobots.Withtheincrease
inthecapabilityofrobots,theneedsofindividualsandfamiliesforservicerobotswillcontinuetoincrease.
willing unwilling neither
TURKEY
QATARNETHERLANDS
NORWAYGERMANY
UK
60
45
40
35
30
27
Figure8:WillingnesstouseAIandrobotsforhealthcare[Source:PwC]
Figure9:Willingnesstohavesurgeryperformedbyrobot
[Source:PwC]
Thecurrentpublicacceptanceofroboticservices,especiallymedicalservices,isnothigh.Peopleareskepticalaboutwhetherrobotscanreachthelevelsofskillofhumandoctors.However,inthenextfewyears,withrobots’abilitiesgraduallyimproving,people’sacceptanceofroboticmedicalserviceswillincrease.
ResearchpublishedbytheOpenRoboethicsInitiativeshowsthatthemainexpectationofhomeservicerobotsistocompletehouseworktomakelifeeasier.Inaddition,education,inspectionandsecurityneedsarerelativelystrong.
9%
11%
17%
19%
26%
32%
32%
38%
75%
Other
Fancytoy
Petreplacement
Companionforfamlily Forcoolnessfactor Educationtoolforchild
Homesecurity ExtensionofelectronicdevicesHouseholdchores
Figure10:Reasonsforpurchaseahomerobot[Source:OpenRoboethicsInitiative]
Thecloudroboticsvaluechain
ThevaluechainofcloudroboticsisshowninFigure11.Therobotplatformproviderdeliverstherobotwhichrunsapplications;theseapplicationsuseintelligentservicesfromtheAIprovider,makinguseofthemobilenetworktoprovidea“smart”userexperienceforendusers.
Robot
Platform
Application
Provider
Mobile
Network
AIProvider
Endusers
Figure11:Cloudroboticsvaluechain[Source:GTIcloudroboticsworkinggroup]
Robotplatform–thetechnologiesbehindcloudrobots
Thedefinitionofrobotmayvarybycontext,butageneraldefinitionis“Amechanicalsystemwiththreeelements:controller,sensor,and
effector/actuator”.
Controller
Astherobotgainscomplexityanddemandsbecomemoreadvanced,thecontrollerparthasalsodevelopedandtoday’srobotsareoftencontrolledbyOSorrichmiddleware,suchasROS(
/
),OpenRTM-aist,middlewarecompliantwithObjectManagementGroup(OMG)RoboticTechnologyComponent(RTC)Specificationiv,andNAOqi(OSusedinSoftbank’sPepper).
Incloudrobots,thecontrollerpartisachievedbycoordinationofcloudandlocalsystems.
Sensors
Robotsusemanydifferenttypesofsensorsrelevanttotheirfunction.Themostimportanttypesare:
CamerasandmicrophonesSophisticatedcamerasandmicrophonesarerequiredtosensetheenvironment.Forinstance,Softbank’shuman-sizedcommunicationrobot
Peppervusesa3DcameraandtwoHDcameras(seeFigure12),andfourdirectionalmicrophonestodetectwheresoundsarecomingfromandlocateuser’sposition.
Figure12:MicrophonearrayandtopcamerainPepperrobot[Source:
http://techon.nikkeibp.co.jp/article/COLUMN/201506
23/424503/?P=2]
3Dcamerasareusedtoprovidepositiondetectionandmapping(oftenreferredtoasSLAM(simultaneouslocationandmapping)).Other3Dpositioningsensorsandtechnologiesarealsoused,frominexpensiveproximitysensing,sonarandphotoelectricsensingtomoreaccurateandcostlytechniquessuchasLiDARthatcanbeusedtobuilduphighresolution3Dpicturesacrossawidecoveragearea.
Wirelessnetworksshouldprovidesufficientbandwidthandlatencyperformancetosendsensordatatothecontroller.Astheaccuracyof
thesensorincreases,sodoesthebandwidthrequired.
Approach
Accuracy
Range
DataRate
3Dcamera
Stereotriangulation/structuredlight
Accurate
Middle
2.8Mbit/s(1280*960@16fps
binocular)
Sonar
Sonicwavemeasurement
Proximity
Short
<1kbit/s
Photoelectricsensor
Photoelectricsignal
measurement
Proximity
Short
<1kbit/s
LiDAR
Timeofflight
Accurate
Wide
0.1Mbit/s(4000
samples@10Hz)
Figure13:Imagesensordescriptionandrequirements[Source:GTIcloudroboticsworkinggroup]
Figure14:SLAMprocessvisualizedonRVIZ,visualizationtoolforROS,andasampleofobtainedmapdata[Source:SoftBank]
Gyroscopes,accelerometers,magnetometersandothersensorsThesesensorsenablearobottoknowitsownorientation,rotationandlocation
Sensor/technologyforlocation
Function
InertiaMeasurementUnit(IMU)
Orientationandrotation
Opticalandquantum-basedsensors
Orientationandrotation
Touchsensor
Contactdetection
GPS
Outdoorlocation
Cellularnetworkdata
Indoor/Outdoorlocation
Bluetoothbeacon
Indoorlocation
Ultrasoundsystem
Objectdetection
Effectors/actuators
Mostactuatorsusedforrobotsareelectric,thoughhydraulicandpneumaticactuatorsarealsoused.Eachtypehasadvantagesanddisadvantages(seeFigure15).
Electrical
Hydraulic
Pneumatic
Operatingprinciple
Electricity,electromagneticforce
Pressurechangeinliquids(oil,water)
Compressedgasisusedtopowerthesystem
Formfactor
Motors(DC,AC,geared,directdriveetc.)andcontrolcircuits
Cylinder,fluidmotor
Cylinder,pneumaticartificialmuscles(PAM)
Advantages
Easytostoreanddistributeelectricenergy,highcontrolflexibility,lowcost
Quickmovementsandgreatforce
Cleanerthanhydraulic,easyinstallation,lightweight
Disadvantages
Producedtorquesaresmallerthanhydraulicorpneumatic
Requirepump,liquidcancausecontamination,difficulttocontrolprecisely
Requirecompressor,lessforceandslowerspeedthanhydraulicduetocompressibility
Figure15:Comparisonofrobotactuatorprinciples[Source:Softbank]
Newdevelopmentsinmobility
Robotplatformneedstoevolve.Robotsneedtohavelongeruptime,highermobilityandrange,thecapabilitytounderstandtheirsurroundings,andtocarryoutsimultaneouslocalizationandmapping(SLAM).
Oneapproachtoachievehighermobility,especiallyinroughterrain,ortodealwithstairsanddoors,istheuseofbipedalorquadrupedsystem.Butcontinuousbalancingisrequiredinthesesystemsandthisrequiresgreaterpower,andtherearesomesafetyconcerns.Safetyrulesforrobotsmayvarybycountryandlocalarea:onepossiblearrangementmaybetotreatrobotsaspedestrians,ormobilityscooters.Speedlimitsand
Mobilenetworksupport
5GOverview
5Gisthenextgenerationofmobilecommunicationtechnology.Itisexpectedtobedefinedbytheendofthisdecadeandtobewidelydeployedintheearlyyearsofthenextdecade.
Thekeycapabilityof5Gisthepeakrateofmorethan10Gbit/s,1millionconnectionspersquarekilometer,andlessthan1msend-to-enddelay.Threeapplicationscenariosfor5Ghavebeendefined:eMBB(EnhancedMobileBroadband),mMTC(MassiveMachineTypeCommunications),andURLLC(Ultra-reliableandLow-latencyCommunications).
remotemonitoringmayberequired(perhapsnotasstrictaswithautonomousvehicles).SafetystandardsthatalreadyapplytorobotsincludeISO13482;otherrelevantstandardsarethosecoveringhomeelectricalappliancesandradiowavetransmitters.
Amorepracticalapproachthanarobotwithlegsisawheeledrobotequippedwith3Dcamerasandrangesystems,asdescribedabove.Anotherapproachisthe“wearable”robot–suchas
CloudMinds’Metaheadset,whichprovidessophisticatedvisualrecognition,SLAM,anddirectionindicationusingvibration.
Todeliverservicesforthesethreescenarios,theconceptofnetworkslicinghasbeendeveloped.Itisexpectedtoimprovetheoperationofcommunicationnetworks.Thisconceptessentiallyconsistsincreatingdifferentinstancesofnetworktechnologiessuitablefordifferentapplicationswithdifferentrequirements.Suchadynamicandflexiblecommunicationnetworkparadigmwillbeenabledbyanewcloud-basednetworkarchitecture,encompassingSoftwareDefinedNetworking(SDN)andNetworkFunctionVirtualization(NFV).
Figure16:5Gcloudarchitecturetosupportmultipleapplications[Source:HuaweiXLabs]
5Gwillmeetthenetworkrequirementforcloudrobotics
Incloudrobotics,fourtypesofbasicconnectionareneeded:
Monitoringandstatusreporting–therobotuploadingdataaboutitsstatustothecloudbrain
Real-timecontrol–mission-criticalcontrolsignalstotelltherobotwhattodo
Videoandvoiceprocessing–tousepowerfulcloudresourcestohelptherobotunderstanditsenvironment,andtointeractwithusers
Softwareandservicesdownload–for
updatingtherobot’ssoftware,ordownloadingusercontentsuchasmapsoreducationalmaterial.Figure17showstherequirementsofthoseconnectiontypes.
Bandwidth
Latency
Reliability(%uptime)
Summary
Monitoringandstatusreporting
Uplink:1kbit/s
1s
99.9%
Highconnection
density
Real-timecontrol
Downlink:10kbit/s
20ms
99.999%
Lowlatency
Videoandvoiceprocessing
Uplink:3.3Mbit/s(1080p/H.264/30fps)
20ms
99.9%
Highuplinkbandwidthand
lowlatency
Softwareandservicesdownload
Downlink:10Mbit/s
100ms
99.9%
Highdownlink
bandwidth
Figure17:Robotnetworkrequirementanalysis[Source:HuaweiXLabs]
Figure18characterisesthenetworkrequirementsoffullycloudifiedversionsofcurrentrobottypes.Existingnetworkswillfinditdifficulttosupport
newrobotapplications,but5G’shighbandwidth,lowlatencyandhighreliabilitycanproviderobustsupportforfuturerobotapplications.
Figure18:Networkrequirementsforcloudrobotapplications[Source:HuaweiXLabs]
5Gnetworkslicingandmobileedgecomputingarewellsuitedforcloudroboticsapplications
Networkslicesthathavedifferentspecificperformancecharacteristicscanmatchtherequirementsofcloudrobotics,matchtheneedsforpowerconsumptionattherobotterminal,andprovideappropriateroaming.Usingtheseapproaches,5Gnetworkswillalsobeabletomeetthemostdemandingrequirementsintermsofbandwidth,latencyandsecurity.
Mobileedgecomputing(MEC)providesappropriatenetworkandothercomputingandstorageresourceslocatedatthemostappropriatepointtomeetthecloudroboticsapplicationrequirements.Byplacingresourcesclosertothe
user,networklatencycanbereduced.MECsolutionsmaybedeployedwiththeMECserverdeployedatagatewayorinthebasestation,providinglocalcontentcache,wirelessawareness-basedbusinessoptimization,localcontentforwarding,andnetworkcapability.Securityisalsoenhancedasmoredataisretainedclosertotheuseranddoesnottraversethecorenetwork.Forcloudrobotics,thecloserAIresourcescanbedeployedtotheenduserthelowerthelatency.
Softwarecontrolofvirtualizedresourcesthroughoutthenetworkwillensurethattheoptimumbalanceisachievedbetweenuseofcentralizedcloudresourcesanduseofmorelocaledge-basedresources,dependingonthelatencyrequirements.
Figure19:Cloudrobotfunctiondeploymentaccordingtolatency
AIprovider–deliveringcloudAIandMachineLearning
AI,MLandDL
AddingthepowerofcloudcomputingtoroboticswillenableArtificialIntelligence(AI),MachineLearning(ML)andDeepLearning(DL)tobeappliedtoabroadsetofnewapplicationswhererobotswillbeverymuchmorecapable,powerfulandintelligentthanbefore.Thiswillinturnaffectindustriesrangingfromsecuritytomanufacturing.DefinitionsofAI,MLandDLarenotuniversallyagreed,butinthispaper:
ArtificialIntelligenceisacomputersystemabletoperformtasksnormallyrequiringhumanintelligence(includingvisualperception,speechrecognition,decision-makingandtranslation)
MachineLearningistheuseofalgorithmsandmethodssuchasdecisiontrees,neural
networksandcase-basedreasoningtoimproveperformancethroughtraining
DeepLearningreferstotheuseofmulti-layeredartificialneuralnetworksthatenablethetrainingtobecarriedoutonahugescale,withtheresultthatdecisionsareverymuchbetter.
Theseconceptsenablerobotstobetaughttodoatask–andtolearnhowtoimprove–ratherthansimplyrespondingtoaprograminacontrolsystem.Machinelearningalgorithmsofvariouskindshelpcomputerstointerpretdataandmakedecisionsbasedonthedata.Theycanbetrainedtounderstandwhentheirdecisionsarerightorwrongsothattheirdecisionsgetbetterovertime.
Usingmachineordeeplearning,arobotcanbecomebetterabletocompleteatask,ortoundertakeanewone,throughanimprovedawarenessofitsenvironmentandthecontextofthetask.Theseapproacheswillalsoreducetheneed–andcost–toprogramrobotsforeachnewtask.Thisinturnopenstheprospectsformoreflexibleindustrialrobotsthatcancopewithchangesinfactoryconfigurationsandshorterproductionruns,andcapableofoptimizingtheprocessesthattheyarerequiredtoperform.Innon-industrialsettings,AIandmachinelearning
enableimagesandspokenwordstobeinterpretedandforrobotstorespondappropriately.Accesstothecomputingpowerrequiredformachineanddeeplearningisgreatlyenhancedthroughhigh-speednetworksandtheuseofcloudresources.
Thekeyareasinwhichthesetechnologieswillbeappliedincloudroboticsareinintelligentvisualprocessingforarealearningandautonavigation,facerecognition,andnatural-language(speech)processing.Theserequiredataprocessingpowerbeyondthatwhichissensiblybuiltintoarobotlocally.
Accesstothecomputingpowerrequiredformachineanddeeplearningisgreatlyenhancedthroughhigh-speednetworksandtheuseofcloudresources
28%
26%
16%
12%
7%
3.60%
3%
2010201120122013201420152016
Figure20:ImageNetLargeScaleVisualRecognitionChallenge(ILSVRC)errorrateofclassification(%)[Source:ImageNet]
Thankstotheimprovementincomputingpowerandthecontinuousimprovementofalgorithms,AItechnologyisprogressingrapidly.Asanexample,theerrorrateforobjectclassificationrecognitionintheannualImageNetcontesthasbeenreducedtolessthan3%.Itisworthnotingthatthecurrentvisualrecognitionhasnotyetreachedthecorrectrecognitionrateof100%,whichforhighsecurity
Figure21:objectclassification
applications,suchasautonomousvehicles,isstillachallenge
IntheImageNet2015competition,NVDIAandIBMprovidedtheparticipantswithacloudGPU(NVDIAK80s),demonstratingthefeasibilityofcloudAI.
FrombigdatatechnologystacktoAIstackDeeplearninghasemergedasthebestwaytoperformimageanalysis,inapplicationssuchasmedicalradiography,aswellasinlow-latency
applicationssuchasremovalofstreamingvideocontentthatisinbreachofpolicies.ThebiggestITcompaniessuchasBaidu,GoogleandFacebookhavecreatedspecializedAIinfrastructuretohandleAIusecases,butmanycompaniesdonothavethein-houseexpertiseorresourcestoexploit
thenewtechnologies.Anewbackendinfrastructureisrequired,andthiswillbeachievedwiththeuseofnewacceleratorchipssuchasGPUs(graphicsprocessorunits).Butasthesetechnologiesrequiremoreprocessingpower,puttinginfrastructureintopracticeishardandCIOswillneedtobecomemorefamiliarwiththesenewtrends.
Currently,companies’ITarchitecturesaredesignedtomakeuseoffaulttolerant,lowcoststoragethatallowsforeasyextensionofresourceclustersandcanmitigateequipmentfailure.ButAIrequiresthatbigdataanalyticssoftwareunderstandsbetterhowtoruncompute
workloadsbytakingfulladvantageofthesenewaccelerators.BigdatatechnologystackswillshifttoAIstacksthatwillallowenterprisestocapturemorevaluefromdatathatiscapturedbysensorsonrobotsandelsewhere.
AIPlatform
BigDataCloud
DataCollection&Connectivity
ImplementingcloudAIrequires:verylargestoragecapacityandcomputingpower,forward-lookinginvestmenttoattractsoftwaredevelopment,APIsandopensourcelibraries.HardwareneedstomovefromCPUstoGPUsorevenAIdedicatedprocessors
Robotsrequireslargedatacloudstostorethedata.Therearegreaterdemandsonsecurity,anonymityanddistributioncapacitythaninthepast.
HundredsofmillionsofconnectedsensorsarerequiredtocollecttrainingAIdatafromhumans,assetsandtheenvironment.
Figure22:AIstack[Source:GTIcloudroboticsworkinggroup]
Lowlatencyiscriticalforrobotexperience100msThedelayofthehumanneuralnetworkis100ms,andiftherobotcanrespondwithinthisdelay,itcanbeconsidered"seamless".Toachieve"seamless"robotresponsecapabilitiesneedsvideocapture,videocoding,networ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省濟南第二中學2024-2025學年高三下學期第二次階段檢測試題-物理試題試卷含解析
- 山東省濟南市育英中學2025年5月普通高中畢業班質量試卷英語試題試卷含答案
- 四川省達川區市級名校2025年5月初三壓軸卷語文試題試卷含解析
- 2025年物理學科的基本概念試題及答案
- 2025年數字營銷行業知識考試試題及答案
- 南京科技職業學院《陶瓷裝飾》2023-2024學年第一學期期末試卷
- 2025年中小學語文試卷及答案
- 江城哈尼族彝族自治縣2024-2025學年數學三下期末綜合測試試題含解析
- 蘇州科技大學天平學院《電工》2023-2024學年第二學期期末試卷
- 遼寧工程技術大學《市政工程預算》2023-2024學年第二學期期末試卷
- 人教版(PEP)2024-2025六年級下冊英語期中測試卷(含答案含聽力原文無聽力音頻)
- 生態安全主題班會課件
- 消防氣防培訓
- 2025年湖南省各市州農電服務有限公司招聘筆試參考題庫含答案解析
- 突發性聽覺喪失的護理
- 2024年演出經紀人《文學藝術史基礎知識》三色速記手冊
- 暫予監外執行申請書
- 第二版臨床護理技術規范部分試題第十一章
- 國家開放大學本科《商務英語3》一平臺在線形考(單元自測1至8)試題及答案2025珍藏版
- 2022新疆中考物理試卷真題及答案解析(歷年9卷)
- 《微生物學檢驗》課程標準(含課程思政)
評論
0/150
提交評論