




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省富陽市第二中學2025屆數學高二上期末學業水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與平行,則的值為()A. B.C. D.2.下列說法正確的是()A.空間中的任意三點可以確定一個平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個平面D.正四棱柱的側面都是正方形3.某企業甲車間有200人,乙車間有300人,現用分層抽樣的方法在這兩個車間中抽取25人進行技能考核,則從甲車間抽取的人數應為()A.5 B.10C.8 D.94.已知“”的必要不充分條件是“或”,則實數的最小值為()A. B.C. D.5.已知函數為偶函數,且當時,,則不等式的解集為()A. B.C. D.6.若數列滿足,,則數列的通項公式為()A. B.C. D.7.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或8.直線的傾斜角為()A.30° B.60°C.90° D.120°9.如圖所示,為了測量A,B處島嶼的距離,小張在D處觀測,測得A,B分別在D處的北偏西、北偏東方向,再往正東方向行駛10海里至C處,觀測B在C處的正北方向,A在C處的北偏西方向,則A,B兩處島嶼間的距離為()海里.A. B.C. D.1010.中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A.192
里 B.96
里C.48
里 D.24
里11.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則12.直線(t為參數)被圓所截得的弦長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的圖象在點處的切線方程為___________.14.若“x2-x-6>0”是“x>a”的必要不充分條件,則a的最小值為________.15.拋物線的準線方程是,則實數___________.16.已知實數,滿足不等式組,則目標函數的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標,若不存在,請說明理由.18.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標準方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程19.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.20.(12分)已知拋物線的焦點為F,傾斜角為45°的直線m過點F,若此拋物線上存在3個不同的點到m的距離為,求此拋物線的準線方程21.(12分)已知函數(1)若,求函數的單調區間;(2)若函數有兩個不相等的零點,證明:22.(10分)已知等差數列的前項和滿足,.(1)求的通項公式;(2)求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.2、C【解析】根據立體幾何相關知識對各選項進行判斷即可.【詳解】對于A,根據公理2及推論可知,不共線的三點確定一個平面,故A錯誤;對于B,在一個平面內,四邊相等的四邊形才一定是菱形,故B錯誤;對于C,根據公理2及推論可知,兩條相交直線可以確定一個平面,故C正確;對于D,正四棱柱指上、下底面都是正方形且側棱垂直于底面的棱柱,側面可以是矩形,故D錯誤.故選:C3、B【解析】根據分層抽樣的定義即可求解.【詳解】從甲車間抽取的人數為人故選:B4、A【解析】首先解不等式得到或,根據題意得到,再解不等式組即可.【詳解】,解得或,因為“”的必要不充分條件是“或”,所以.實數的最小值為.故選:A5、D【解析】結合導數以及函數的奇偶性判斷出的單調性,由此化簡不等式來求得不等式的解集.【詳解】當時,單調遞增,,所以單調遞增.因為是偶函數,所以當時,單調遞減.,,,或.即不等式的解集為.故選:D6、B【解析】根據等差數列的定義和通項公式直接得出結果.【詳解】因為,所以數列是等差數列,公差為1,所以.故選:B7、D【解析】根據曲線方程的特征,發現曲線表示在軸上方的圖象,畫出圖形,根據圖形上直線的三個特殊位置,當已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應的的值;當已知直線位于直線及直線的位置時,分別求出對應的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當直線在直線位置時,直線與曲線剛好有兩個交點,此時,當直線在直線位置時,直線與曲線只有一個公共點,此時,則當時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D8、B【解析】根據給定方程求出直線斜率,再利用斜率的定義列式計算得解.【詳解】直線的斜率,設其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B9、C【解析】分別在和中,求得的長度,再在中,利用余弦定理,即可求解.【詳解】如圖所示,可得,所以,在中,可得,在直角中,因為,所以,在中,由余弦定理可得,所以.故選:C.10、B【解析】由題可得此人每天走的步數等比數列,根據求和公式求出首項可得.【詳解】由題意可知此人每天走的步數構成為公比的等比數列,由題意和等比數列的求和公式可得,解得,第此人第二天走里.故選:B11、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質可判斷D【詳解】A.當時,,但,故A錯;B.當時,,故B錯;C.當時,,但,故C錯;D.若,則,D正確故選:D12、C【解析】求得直線普通方程以及圓的直角坐標方程,利用弦長公式即可求得結果.【詳解】因為直線的參數方程為:(t為參數),故其普通方程為,又,根據,故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導得到,計算,根據點斜式可得到切線方程.【詳解】因此,則,故,又點在函數的圖象上,故切線方程為:,即.故答案為:14、3【解析】解出不等式x2-x-6>0,由“x2-x-6>0”是“x>a”的必要不充分條件,求出a的最小值.【詳解】由x2-x-6>0,解得x<-2或x>3.因為“x2-x-6>0”是“x>a”的必要不充分條件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故答案為:3.【點睛】本題考查充分條件和必要條件的應用,考查一元二次不等式的解法,屬于基礎題.15、##【解析】將拋物線方程化為標準方程,根據其準線方程即可求得實數.【詳解】拋物線化為標準方程:,其準線方程是,而所以,即,故答案為:16、##【解析】畫出可行域,通過平移基準直線到可行域邊界來求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,當時,取得最大值.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,T(0,1)﹒【解析】(1)根據橢圓的定義,結合即可求P的軌跡方程;(2)假設存在T(0,t),設AB方程為,聯立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設直線AB的方程為,聯立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.18、(1);(2).【解析】(1)根據橢圓的定義即可判斷并求解;(2)根據點差法即可求解中點弦斜率和中點弦方程.【小問1詳解】設,,E(x,y),∵,,且,點的軌跡是以,為焦點,長軸長為4的橢圓設橢圓C的方程為,記,則,,,,,曲線的標準方程為【小問2詳解】根據橢圓對稱性可知直線l斜率存在,設,則,由①-②得,,∴l:,即.19、(1)證明見解析;(2).【解析】(1)設為中點,連接,根據,證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標系,計算各點坐標,計算平面和平面的法向量,根據向量夾角公式計算得到答案.【詳解】(1)設為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標系,則,,,,,,由,,,即,∴,,,設為平面的法向量,則由,令,得,,∴,設為平面的法向量,則由,令,得,,∴,設二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力,建立空間直角坐標系是解題的關鍵.20、【解析】設出直線m的方程,利用方程組聯立、一元二次方程根的判別式求出與直線m平行的拋物線的切線方程,結合平行線間距離公式進行求解即可.【詳解】拋物線的焦點坐標為:,設直線m為,設為與拋物線相切,聯立直線與拋物線方程,化簡整理可得,,則,解得,且,故兩平行線間的距離,解得,故所求的準線方程為21、(1)單調遞增區間是(4,+∞),單調遞減區間是(0,4);(2)證明見解析.【解析】(1)求的導函數,結合定義域及導數的符號確定單調區間;(2)法一:討論、時的零點情況,即可得,構造,利用導數研究在(0,2a)恒成立,結合單調性證明不等式;法二:設,由零點可得,進而應用分析法將結論轉化為證明,綜合換元法、導數證明結論即可.【小問1詳解】函數的定義域為(0,+∞),當a=2時,,則令得,x>4;令得,0<x<4;所以,單調遞增區間是(4,+∞);單調遞減區間是(0,4).【小問2詳解】法一:當a≤0時,>0在(0,+∞)上恒成立,故函數不可能有兩個不相等的零點,當a>0時,函數在(2a,+∞)上單調遞增,在(0,2a)上單調遞減,因為函數有兩個不相等的零點,則,不妨設,設,(0<x<2a),則,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上單調遞減,即>=0,所以,即,又,故,因為,所以,因為函數在(2a,+∞)上單調遞增,所以,即法二:不妨設,由題意得,,得,即,要證,只需證,即證:,即,令,,則,所以在區間(1,+∞)單調遞減,故<=0,即恒成立因此,所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 溫州醫科大學《公共衛生與預防醫學研究進展》2023-2024學年第二學期期末試卷
- 江蘇省泰州市靖江實驗學校2025屆中考英語試題模擬題及解析(全國卷I:)含答案
- 江西省高安五中學2025年初三寒假模擬(二)語文試題試卷含解析
- 上海財經大學浙江學院《土壤微生物》2023-2024學年第二學期期末試卷
- 山東藝術設計職業學院《生物技術制藥概論》2023-2024學年第二學期期末試卷
- 深圳市重點中學2025屆高三聯考物理試題含解析
- 廈門大學《高級俄語I》2023-2024學年第二學期期末試卷
- 天津工程職業技術學院《化工技術經濟評價與項目管理》2023-2024學年第二學期期末試卷
- 四川省綿陽市2025屆高考歷史試題模擬卷(二)含解析
- 2025年植物保護專業考試試卷及答案
- 金屬礦床地下開采復習題及答案
- Cpk 計算標準模板
- 【小升初】2023小學六年級人教版道德與法治升學畢業試卷及答案(時政+上下冊考點)04
- 乳化液廢水處理方案
- 軍事航天技術
- 慢阻肺的管理課件
- 新媒體實驗影像課件
- HP系列培訓手冊
- 游戲王統一規則
- 畢業論文-原油電脫水方法與機理的研究
- 陜西省2022年普通高中學業水平考試(真題)
評論
0/150
提交評論