




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省肇慶市2025屆高二上數學期末統考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.2.已知橢圓的右焦點和右頂點分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.3.已知點,是橢圓:的左、右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.4.執行如圖所示的程序框圖,若輸出的的值為,則輸入的的值可能為()A.96 B.97C.98 D.995.已知點,,,動點P滿足,則的取值范圍為()A. B.C. D.6.命題“,”的否定形式是()A., B.,C., D.,7.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直8.過點且與橢圓有相同焦點的雙曲線方程為()A B.C. D.9.已知拋物線=的焦點為F,M、N是拋物線上兩個不同的點,若,則線段MN的中點到y軸的距離為()A.8 B.4C. D.910.若展開式的二項式系數之和為,則展開式的常數項為()A. B.C. D.11.已知空間向量,則()A. B.C. D.12.《周髀算經》中有這樣一個問題,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣日影長依次成等差數列,若冬至、大寒、雨水的日影長的和為36.3尺,小寒、驚蟄、立夏的日影長的和為18.3尺,則冬至的日影長為()A4尺 B.8.5尺C.16.1尺 D.18.1尺二、填空題:本題共4小題,每小題5分,共20分。13.已知,空間直角坐標系中,過點且一個法向量為的平面的方程為.用以上知識解決下面問題:已知平面的方程為,直線是兩個平面與的交線,則直線與平面所成角的正弦值為___________.14.在平面幾何中有如下結論:若正三角形的內切圓周長為,外接圓周長為,則.推廣到空間幾何可以得到類似結論:若正四面體的內切球表面積為,外接球表面積為,則__________15.已知直線,,為拋物線上一點,則到這兩條直線距離之和的最小值為___________.16.圓錐的高為1,底面半徑為,則過圓錐頂點的截面面積的最大值為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)當時,求曲線在點處的切線方程;(2)若對任意的,恒成立,求實數a的取值范圍18.(12分)已知點是圓:上任意一點,是圓內一點,線段的垂直平分線與半徑相交于點(1)當點在圓上運動時,求點的軌跡的方程;(2)設不經過坐標原點,且斜率為的直線與曲線相交于,兩點,記,的斜率分別是,.當,都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由19.(12分)已知函數,且)的圖象經過點和
.(1)求實數,的值;(2)若,求數列前項和
.20.(12分)記數列的前n項和為,已知點在函數的圖像上(1)求數列的通項公式;(2)設,求數列的前9項和21.(12分)已知橢圓的左焦點為,上頂點為,直線與橢圓的另一個交點為A(1)求點A的坐標;(2)過點且斜率為的直線與橢圓交于,兩點(均與A,不重合),過點與軸垂直的直線分別交直線,于點,,證明:點,關于軸對稱22.(10分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意確定流程圖的功能,然后計算其輸出值即可.【詳解】運行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項求和可得:.故選:C.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結構、條件結構和循環結構(2)要識別、運行程序框圖,理解框圖所解決的實際問題(3)按照題目的要求完成解答并驗證2、B【解析】根據橢圓方程及其性質有,求解即可.【詳解】由題設,,整理得,可得.故選:B3、D【解析】設,先求出點,得,化簡即得解【詳解】由題意可知橢圓的焦點在軸上,如圖所示,設,則,∵為等腰三角形,且,∴.過作垂直軸于點,則,∴,,即點.∵點在過點且斜率為的直線上,∴,解得,∴.故選:D【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關于離心率的方程解方程即得解).4、D【解析】根據程序框圖得出的變換規律后求解【詳解】當時,,當時,,當時,,當時,,可得輸出的T關于t的變換周期為4,而,故時,輸出的值為,故選:D5、C【解析】由題設分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點的距離范圍即可.【詳解】由題設,在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C6、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A7、B【解析】通過判斷直線的方向向量與平面的法向量的關系,可得結論【詳解】因為,,所以,所以∥,因為直線的方向向量為,平面的法向量為,所以,故選:B8、D【解析】設雙曲線的方程為,再代點解方程即得解.【詳解】解:由得,所以橢圓的焦點為.設雙曲線的方程為,因為雙曲線過點,所以.所以雙曲線的方程為.故選:D9、B【解析】過分別作垂直于準線,垂足為,則由拋物線的定義可得,再過MN的中點作垂直于準線,垂足為,然后利用梯形的中位線定理可求得結果【詳解】拋物線=的焦點,準線方程為直線如圖,過分別作垂直于準線,垂足為,過MN的中點作垂直于準線,垂足為,則由拋物線的定義可得,因為,所以,因為是梯形的中位線,所以,所以線段MN的中點到y軸的距離為4,故選:B10、C【解析】利用二項式系數的性質求得的值,再利用二項式展開式的通項公式,求得結果即可.【詳解】解:因為展開式的二項式系數之和為,則,所以,令,求得,所以展開式的常數項為.故選:C.11、C【解析】A利用向量模長的坐標表示判斷;B根據向量平行的判定,是否存在實數使即可判斷;C向量數量積的坐標表示求即可判斷;D利用向量坐標的線性運算及數量積的坐標表示求即可.【詳解】因為,所以A不正確:因為不存在實數使,所以B不正確;因為,故,所以C正確;因為,所以,所以D不正確故選:C12、C【解析】設等差數列,用基本量代換列方程組,即可求解.【詳解】由題意,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣的日影長依次成等差數列,記為數列,公差為d,則有,即,解得:,即冬至的日影長為16.1尺.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意分別求出這三個平面的法向量,設直線的方向向量為,由直線與平面與的法向量垂直,得出,由向量的夾角公式可得答案.【詳解】由,解得,即直線與平面的交點坐標為平面的方程為,可得所以平面的法向量為平面的法向量為,的法向量為設直線的方向向量為,則,即取,設直線與平面所成角則故答案為:14、【解析】分析:平面圖形類比空間圖形,二維類比三維得到,類比平面幾何的結論,確定正四面體的外接球和內切球的半徑之比,即可求得結論.詳解:平面幾何中,圓的周長與圓的半徑成正比,而在空間幾何中,球的表面積與半徑的平方成正比,因為正四面體的外接球和內切球的半徑之比是,,故答案為.點睛:本題主要考查類比推理,屬于中檔題.類比推理問題,常見的類型有:(1)等差數列與等比數列的類比;(2)平面與空間的類比;(3)橢圓與雙曲線的類比;(4)復數與實數的類比;(5)向量與數的類比.15、【解析】過作,垂足分別為,由直線為拋物線的準線,轉化,當三點共線時,取得最小值【詳解】過作,垂足分別為拋物線的焦點為直線為拋物線的準線由拋物線的定義,故,當三點共線時,取得最小值故最小值為點到直線的距離:故答案為:16、2【解析】求出圓錐軸截面頂角大小,判斷并求出所求面積最大值【詳解】如圖,是圓錐軸截面,是一條母線,設軸截面頂角為,因為圓錐的高為1,底面半徑為,所以,,所以,,設圓錐母線長為,則,截面的面積為,因為,所以時,故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求導,由到數值求出斜率,最后根據點斜式求出方程即可;(2)采用分離常數法,轉化為求新函數的值域即可.【小問1詳解】時,,,則,,所以在點處的切線方程為,即【小問2詳解】對任意的,恒成立,即,對任意的,令,即,則,因為,,所以當時,,在區間上單調遞減,當時,,在區間上單調遞增,則,所以18、(1);(2)是定值,.【解析】(1)根據給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(2)設出直線的方程,再與軌跡的方程聯立,借助韋達定理計算作答.【小問1詳解】圓:的圓心,半徑,因線段的垂直平分線與半徑相交于點,則,而,于是得,因此,點的軌跡是以C,A為左右焦點,長軸長為4的橢圓,短半軸長有,所以軌跡的方程為.【小問2詳解】依題意,設直線的方程為:,,由消去y并整理得:,,則且,設,則有,,因直線,的斜率,都存在且不為,因此,且,,,所以直線,的斜率,都存在且不為時,是定值,這個定值是.【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1),(2)【解析】(1)將A、B點坐標代入,計算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結合等比數列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,
.【小問2詳解】由(1)得,又,所以,故
.20、(1)(2)【解析】(1)利用的關系可求.(2)利用裂項相消法可求數列的前9項和【小問1詳解】由題意知當時,;當時,,適合上式所以【小問2詳解】則21、(1)(2)證明見解析【解析】(1)先求出直線的方程,聯立直線與橢圓,求出A點坐標;(2)設出直線方程,聯立橢圓方程,用韋達定理得到兩根之和,兩根之積,求出兩點的縱坐標,證明出,即可證明關于軸對稱.【小問1詳解】由題意得,,所以直線方程為,與橢圓方程聯立得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政法學與國際法的關系與試題答案
- 煤堆場火災應急預案演練(3篇)
- 風機機艙火災應急預案(3篇)
- 行政法學復習的策略與實踐知識點:試題及答案
- 辦公場所火災應急預案(3篇)
- 答案解析的系統化2025年計算機二級VB考試試題及答案
- 公司新市場拓展與風險管理策略的結合試題及答案
- 行政管理中的法律分析方法與試題答案
- 行政管理重要文件試題及答案
- 企業戰略調整中的市場亮點試題及答案
- 店面出讓股權協議書
- 英文電影鑒賞知到智慧樹期末考試答案題庫2025年北華大學
- 心理健康課件主題班會
- 2025年家政服務行業考核考試試題及答案
- 美容診所合作協議書
- 江蘇省南通市2025屆高三三模語文試題(含答案)
- 護理6大核心制度
- 旅游退團協議書
- 浙江國企筆試題目及答案
- 線性代數中向量空間的概念與應用:課件
- 2025年小學教師資格考試《綜合素質》文化素養高頻考點專項練習及答案
評論
0/150
提交評論