




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆北京市朝陽區(qū)北京八十中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或2.設(shè)是空間一定點(diǎn),為空間內(nèi)任一非零向量,滿足條件的點(diǎn)構(gòu)成的圖形是()A.圓 B.直線C.平面 D.線段3.圓截直線所得弦的最短長度為()A.2 B.C. D.44.圓關(guān)于直線l:對(duì)稱的圓的方程為()A. B.C. D.5.已知直線和圓相交于兩點(diǎn).若,則的值為()A. B.C. D.6.如圖,在正方體中,是側(cè)面內(nèi)一動(dòng)點(diǎn),若到直線與直線的距離相等,則動(dòng)點(diǎn)的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線7.已知數(shù)列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.38.若圓與圓相切,則實(shí)數(shù)a的值為()A.或0 B.0C. D.或9.是橢圓的焦點(diǎn),點(diǎn)在橢圓上,點(diǎn)到的距離為1,則到的距離為()A.3 B.4C.5 D.610.拋物線的準(zhǔn)線方程為()A B.C. D.11.已知數(shù)列的前項(xiàng)和為,滿足,,,則()A. B.C.,,成等差數(shù)列 D.,,成等比數(shù)列12.己知F為拋物線的焦點(diǎn),過F作兩條互相垂直的直線,,直線與C交于A、B兩點(diǎn),直線與C交于D、E兩點(diǎn),則的最小值為()A.24 B.22C.20 D.16二、填空題:本題共4小題,每小題5分,共20分。13.已知正數(shù)滿足,則的最小值是__________.14.方程的曲線的一條對(duì)稱軸是_______,的取值范圍是______.15.某教師組織本班學(xué)生開展課外實(shí)地測量活動(dòng),如圖是要測山高.現(xiàn)選擇點(diǎn)A和另一座山頂點(diǎn)C作為測量觀測點(diǎn),從A測得點(diǎn)M的仰角,點(diǎn)C的仰角,測得,,已知另一座山高米,則山高_(dá)______米.16.命題“若,則”的逆否命題為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù);(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?18.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)設(shè)存在兩個(gè)極值點(diǎn),且,若,求證:.19.(12分)已知函數(shù),.(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求取值范圍.20.(12分)已知橢圓的離心率是,且過點(diǎn).直線與橢圓相交于兩點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)求的面積的最大值;(Ⅲ)設(shè)直線,分別與軸交于點(diǎn),.判斷,大小關(guān)系,并加以證明.21.(12分)已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值時(shí)兩圓外切?(2)m取何值時(shí)兩圓內(nèi)切?(3)當(dāng)m=45時(shí),求兩圓公共弦所在直線的方程和公共弦的長22.(10分)已知拋物線的焦點(diǎn)為F,點(diǎn)是拋物線上的點(diǎn),且.(1)求拋物線方程;(2)直線與拋物線交于、兩點(diǎn),且.求△OPQ面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】試題解析:當(dāng)焦點(diǎn)在x軸上:當(dāng)焦點(diǎn)在y軸上:考點(diǎn):本題考查橢圓的標(biāo)準(zhǔn)方程點(diǎn)評(píng):解決本題的關(guān)鍵是焦點(diǎn)位置不同方程不同2、C【解析】根據(jù)法向量的定義可判斷出點(diǎn)所構(gòu)成的圖形.【詳解】是空間一定點(diǎn),為空間內(nèi)任一非零向量,滿足條件,所以,構(gòu)成的圖形是經(jīng)過點(diǎn),且以為法向量的平面.故選:C.【點(diǎn)睛】本題考查空間中動(dòng)點(diǎn)的軌跡,考查了法向量定義的理解,屬于基礎(chǔ)題.3、A【解析】由題知直線過定點(diǎn),且在圓內(nèi),進(jìn)而求解最值即可.【詳解】解:將直線化為,所以聯(lián)立方程得所以直線過定點(diǎn)將化為標(biāo)準(zhǔn)方程得,即圓心為,半徑為,由于,所以點(diǎn)在圓內(nèi),所以點(diǎn)與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A4、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對(duì)稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,則,解得,即圓關(guān)于直線對(duì)稱的圓的圓心為,半徑,所以對(duì)稱圓的方程為;故選:A5、C【解析】求出圓心到直線的距離,再利用,化簡求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.6、D【解析】由到直線的距離等于到點(diǎn)的距離可得到直線的距離等于到點(diǎn)的距離,然后可得答案.【詳解】因?yàn)榈街本€的距離等于到點(diǎn)的距離,所以到直線的距離等于到點(diǎn)的距離,所以動(dòng)點(diǎn)的軌跡是以為焦點(diǎn)、為準(zhǔn)線的拋物線故選:D7、C【解析】根據(jù),(且),利用累加法求得,再根據(jù)恒成立求解.【詳解】因?yàn)閿?shù)列滿足,,(且)所以,,,,因?yàn)楹愠闪ⅲ裕瑒tM的最小值是,故選:C8、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計(jì)算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點(diǎn)不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實(shí)數(shù)a的值為或.故選:D9、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因?yàn)椋裕蔬x:C10、D【解析】根據(jù)拋物線方程求出,進(jìn)而可得焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程.【詳解】由可得,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為:,故選:D.11、C【解析】寫出數(shù)列前幾項(xiàng),觀察規(guī)律,找到數(shù)列變化的周期,再依次去判斷各項(xiàng)的說法即可解決.【詳解】數(shù)列中,,,,則此數(shù)列為1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即數(shù)列的各項(xiàng)是周期為6數(shù)值循環(huán)重復(fù)的一列數(shù),選項(xiàng)A:,,則.判斷錯(cuò)誤;選項(xiàng)B:由,可知當(dāng)時(shí),.判斷錯(cuò)誤;選項(xiàng)C:,則,即,,成等差數(shù)列.判斷正確;選項(xiàng)D:,,則,,即,,不能構(gòu)成等比數(shù)列.判斷錯(cuò)誤.故選:C12、A【解析】由拋物線的性質(zhì):過焦點(diǎn)的弦長公式計(jì)算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因?yàn)椋裕裕蔬x:A.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】利用“1”代換,結(jié)合基本不等式求解.【詳解】因?yàn)椋裕?dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以當(dāng)時(shí),取得最小值8.故答案為:8.14、①.x軸或直線②.【解析】根據(jù)給定條件分析方程的性質(zhì)即可求得對(duì)稱軸及x的取值范圍作答.【詳解】方程中,因,則曲線關(guān)于x軸對(duì)稱,又,解得,此時(shí)曲線與都關(guān)于直線對(duì)稱,曲線的對(duì)稱軸是x軸或直線,的取值范圍是.故答案為:x軸或直線;15、【解析】利用正弦定理可求出各個(gè)三角形的邊長,進(jìn)而求出山高.【詳解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案為:.16、若,則【解析】否定原命題條件和結(jié)論,并將條件與結(jié)論互換,即可寫出逆否命題.【詳解】由逆否命題的定義知:原命題的逆否命題為“若,則”.故答案為:若,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)【解析】(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方圖中眾數(shù)為最高矩形上端的中點(diǎn)可得,可得中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數(shù)試題解析:(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方圖中x的值是0.0075.-------------3分(2)月平均用電量的眾數(shù)是=230.-------------5分因?yàn)?0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用電量的中位數(shù)是224.------------8分(3)月平均用電量為[220,240)的用戶有0.0125×20×100=25戶,月平均用電量為[240,260)的用戶有0.0075×20×100=15戶,月平均用電量為[260,280)的用戶有0.005×20×100=10戶,月平均用電量為[280,300]的用戶有0.0025×20×100=5戶,-------------10分抽取比例==,所以月平均用電量在[220,240)的用戶中應(yīng)抽取25×=5戶.--12分考點(diǎn):頻率分布直方圖及分層抽樣18、(1)在和上單調(diào)遞增,在上單調(diào)遞減;(2)證明見解析【解析】(1)首先求出函數(shù)的導(dǎo)函數(shù),再令、,分別求出函數(shù)的單調(diào)區(qū)間;(2)先求出,構(gòu)造函數(shù),求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最小值,從而證明結(jié)論【小問1詳解】解:當(dāng)時(shí),,所以,令,解得或,令,解得,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】解:,,,因?yàn)榇嬖趦蓚€(gè)極值點(diǎn),,所以存在兩個(gè)互異的正實(shí)數(shù)根,,所以,,則,所以,所以,令,則,,,在上單調(diào)遞減,,而,即,19、(1)或;(2).【解析】(1)解不含參數(shù)的一元二次不等式即可求出結(jié)果;(2)二次函數(shù)的恒成立問題需要對(duì)二次項(xiàng)系數(shù)是否為0進(jìn)行分類討論,即可求出結(jié)果.【詳解】(1)當(dāng)時(shí),,即,解得或,所以,解集為或.(2)因?yàn)樵谏虾愠闪ⅲ佼?dāng)時(shí),恒成立;②當(dāng)時(shí),,解得,綜上,的取值范圍為.20、(1)(2)(3)見解析【解析】(1)由題意求得,所以橢圓的方程為(2)聯(lián)立直線與橢圓方程,由題意可得.三角形的高為.,面積表達(dá)式,當(dāng)且僅當(dāng)時(shí),.即的面積的最大值是(3)結(jié)論為.利用題意有.所以試題解析:解:(Ⅰ)設(shè)橢圓的半焦距為因?yàn)闄E圓的離心率是,所以,即由解得所以橢圓的方程為(Ⅱ)將代入,消去整理得令,解得設(shè)則,所以點(diǎn)到直線的距離為所以的面積,當(dāng)且僅當(dāng)時(shí),所以的面積的最大值是(Ⅲ).證明如下:設(shè)直線,的斜率分別是,,則由(Ⅱ)得,所以直線,的傾斜角互補(bǔ)所以,所以所以21、(1)(2)(3)直線方程為4x+3y-23=0,弦長為【解析】(1)先把兩個(gè)圓的方程化為標(biāo)準(zhǔn)形式,求出圓心和半徑,再根據(jù)兩圓的圓心距等于兩圓的半徑之和,求得m的值;(2)由兩圓的圓心距等于兩圓的半徑之差為,求得m的值.(3)當(dāng)m=45時(shí),把兩個(gè)圓的方程相減,可得公共弦所在的直線方程.求出第一個(gè)圓的圓心(1,3)到公共弦所在的直線的距離d,再利用弦長公式求得弦長試題解析:(1)由已知可得兩個(gè)圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d==5,兩圓的半徑之和為+,由兩圓的半徑之和為+=5,可得m=(2)由兩圓的圓心距d=="5"等于兩圓的半徑之差為|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)當(dāng)m=45時(shí),兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 有效排痰護(hù)理 2
- 造口并發(fā)癥及處理
- 心肺復(fù)蘇知識(shí)培訓(xùn)
- 浙江省2023~2024學(xué)年高二數(shù)學(xué)下學(xué)期返校聯(lián)考試題含答案
- 貴州省黔西南州金成實(shí)驗(yàn)學(xué)校2024?2025學(xué)年高一下學(xué)期3月檢測 數(shù)學(xué)試卷(含解析)
- 江蘇省鹽城市大豐區(qū)新豐初級(jí)中學(xué)2025屆學(xué)業(yè)水平模擬考試化學(xué)試題仿真模擬試題A卷含解析
- 內(nèi)蒙古豐州職業(yè)學(xué)院《食品工藝綜合實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 九州職業(yè)技術(shù)學(xué)院《礦床地球化學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川省成都實(shí)驗(yàn)高級(jí)中學(xué)2025屆高三年級(jí)5月統(tǒng)測模擬試卷含解析
- 西交利物浦大學(xué)《理論力學(xué)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 數(shù)據(jù)挖掘與分析考試題庫(含答案)
- 系統(tǒng)商用密碼應(yīng)用方案v5-2024(新模版)
- 2024年辦公室水電管理制度(二篇)
- 高中語文-1.4《十八歲出門遠(yuǎn)行》課件-新人教版必修3
- 《抖音運(yùn)營》課件-1.短視頻與抖音認(rèn)知基礎(chǔ)
- 4公民的基本權(quán)利和義務(wù) 第一課時(shí)《公民的基本權(quán)利》教學(xué)設(shè)計(jì)-2024-2025學(xué)年六年級(jí)上冊(cè)道德與法治統(tǒng)編版
- 2023年全國中學(xué)生生物學(xué)聯(lián)賽新疆初賽試題-(附答案解析)
- 2024中考英語試題分類匯編:非謂語(含解析)
- 第七屆江西省大學(xué)生金相技能大賽知識(shí)競賽單選題題庫附有答案
- 第9課++友好相處++學(xué)會(huì)合作+第2課時(shí) 【中職專用】中職思想政治《心理健康與職業(yè)生涯》高效課堂 (高教版基礎(chǔ)模塊)
- 高中二年級(jí)下學(xué)期化學(xué)《烷烴的命名》教學(xué)課件
評(píng)論
0/150
提交評(píng)論