




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省金堂縣達標名校2023-2024學年中考數學考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣12.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3.要使分式有意義,則x的取值范圍是()A.x= B.x> C.x< D.x≠4.下列運算中正確的是()A.x2÷x8=x?6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a35.已知二次函數y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=06.如圖1是某生活小區的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數關系式是()A. B.C. D.7.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,48.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.9.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.10.如圖所示,將矩形ABCD的四個角向內折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:311.利用運算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–199812.若代數式有意義,則實數x的取值范圍是()A.x=0 B.x=2 C.x≠0 D.x≠2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在四邊形ABCD中,對角線AC,BD交于點O,OA=OC,OB=OD,添加一個條件使四邊形ABCD是菱形,那么所添加的條件可以是___________(寫出一個即可).14.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.15.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.16.如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.17.2017年7月27日上映的國產電影《戰狼2》,風靡全國.劇中“犯我中華者,雖遠必誅”鼓舞人心,彰顯了祖國的強大實力與影響力,累計票房56.8億元.將56.8億元用科學記數法表示為_____元.18.有5張背面看上去無差別的撲克牌,正面分別寫著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機抽取2張,抽出的卡片上的數字恰好是兩個連續整數的概率是__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統計圖,請你根據統計圖的信息回答下列問題:(1)本次調查的學生總數為_____人,被調查學生的課外閱讀時間的中位數是_____小時,眾數是_____小時;并補全條形統計圖;(2)在扇形統計圖中,課外閱讀時間為5小時的扇形的圓心角度數是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?20.(6分)如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.21.(6分)計算:(1-n)0-|3-2|+(-)-1+4cos30°.22.(8分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.23.(8分)在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.求證:四邊形BFDE是矩形;若CF=3,BF=4,DF=5,求證:AF平分∠DAB.24.(10分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結果保留根號).25.(10分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.26.(12分)如圖,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,.(1)求直線的表達式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.27.(12分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
首先找出分式的最簡公分母,進而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗:當x=-時,(x+1)2≠0,故x=-是原方程的根.故選C.【點睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關鍵.2、C【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【點睛】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合.3、D【解析】
本題主要考查分式有意義的條件:分母不能為0,即3x?7≠0,解得x.【詳解】∵3x?7≠0,∴x≠.故選D.【點睛】本題考查的是分式有意義的條件:當分母不為0時,分式有意義.4、A【解析】
根據同底數冪的除法法則:底數不變,指數相減;同底數冪的乘法法則:同底數冪相乘,底數不變,指數相加;冪的乘方法則:底數不變,指數相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進行計算即可.【詳解】解:A、x2÷x8=x-6,故該選項正確;
B、a?a2=a3,故該選項錯誤;
C、(a2)3=a6,故該選項錯誤;
D、(3a)3=27a3,故該選項錯誤;
故選A.【點睛】此題主要考查了同底數冪的乘除法、冪的乘方和積的乘方,關鍵是掌握相關運算法則.5、D【解析】
拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據根與系數的關系把AB的長度用b、c表示,而S△APB=1,然后根據三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.6、D【解析】
根據圖象可設二次函數的頂點式,再將點(0,0)代入即可.【詳解】解:根據圖象,設函數解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據實際拋物線形,求函數解析式,解題的關鍵是正確設出函數解析式.7、D【解析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.8、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.9、B【解析】試題解析:從正面看是三個矩形,中間矩形的左右兩邊是虛線,故選B.10、A【解析】
先根據圖形翻折的性質可得到四邊形EFGH是矩形,再根據全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點睛】本題考查的是圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.11、B【解析】
根據乘法分配律和有理數的混合運算法則可以解答本題.【詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【點睛】本題考查了有理數的混合運算,解答本題的關鍵是明確有理數混合運算的計算方法.12、D【解析】
根據分式的分母不等于0即可解題.【詳解】解:∵代數式有意義,∴x-2≠0,即x≠2,故選D.【點睛】本題考查了分式有意義的條件,屬于簡單題,熟悉分式有意義的條件是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四邊形ABCD是平行四邊形,再根據菱形的判定定理添加鄰邊相等或對角線垂直即可判定該四邊形是菱形.所以添加條件AB=AD或BC=CD或AC⊥BD,本題答案不唯一,符合條件即可.14、1【解析】
由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據相似三角形的性質可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【點睛】本題考查相似三角形的判定與性質,解題的關鍵是掌握相似三角形的判定與性質.15、2【解析】
根據勾股定理可以得出AB的長度,從而得知CD的長度,再根據旋轉的性質可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點睛】本題考查的是勾股定理、直角三角形斜邊中點的性質和旋轉的性質,能夠根據勾股定理求出AB的長是解題的關鍵.16、【解析】
如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進而證明△AEG為直角三角形,運用相似三角形的性質即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點睛】此題考查矩形的性質,翻折變換的性質,以考查全等三角形的性質及其應用、射影定理等幾何知識點為核心構造而成;對綜合的分析問題解決問題的能力提出了一定的要求.17、5.68×109【解析】試題解析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.56.8億故答案為18、【解析】
列表得出所有等可能的情況數,找出恰好是兩個連續整數的情況數,即可求出所求概率.【詳解】解:列表如下:567895﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6(5、6)﹣﹣﹣(7、6)(8、6)(9、6)7(5、7)(6、7)﹣﹣﹣(8、7)(9、7)8(5、8)(6、8)(7、8)﹣﹣﹣(9、8)9(5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情況有20種,其中恰好是兩個連續整數的情況有8種,則P(恰好是兩個連續整數)=故答案為.【點睛】此題考查了列表法與樹狀圖法,概率=所求情況數與總情況數之比.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】
(1)根據統計圖可知,課外閱讀達3小時的共10人,占總人數的20%,由此可得出總人數;求出課外閱讀時間4小時與6小時男生的人數,再根據中位數與眾數的定義即可得出結論;根據求出的人數補全條形統計圖即可;
(2)求出課外閱讀時間為5小時的人數,再求出其人數與總人數的比值即可得出扇形的圓心角度數;
(3)求出總人數與課外閱讀時間為6小時的學生人數的百分比的積即可.【詳解】解:(1)∵課外閱讀達3小時的共10人,占總人數的20%,∴=50(人).∵課外閱讀4小時的人數是32%,∴50×32%=16(人),∴男生人數=16﹣8=8(人);∴課外閱讀6小時的人數=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴課外閱讀3小時的是10人,4小時的是16人,5小時的是20人,6小時的是4人,∴中位數是4小時,眾數是5小時.補全圖形如圖所示.故答案為50,4,5;(2)∵課外閱讀5小時的人數是20人,∴×360°=144°.故答案為144°;(3)∵課外閱讀6小時的人數是4人,∴800×=64(人).答:九年級一周課外閱讀時間為6小時的學生大約有64人.【點睛】本題考查了統計圖與中位數、眾數的知識點,解題的關鍵是熟練的掌握中位數與眾數的定義與根據題意作圖.20、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】
(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達式,根據二次函數最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設拋物線C1的表達式為(),把C(0,)代入可得,.∴C1的表達式為:,即.設P(p,),∴S△PBC=S△POC+S△BOP–S△BOC=.∵<0,∴當時,S△PBC最大值為.(3)由C2可知:B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD<90°,∴討論∠BMD=90°和∠BDM=90°兩種情況:當∠BMD=90°時,BM2+DM2=BD2,即+=,解得:,(舍去).當∠BDM=90°時,BD2+DM2=BM2,即+=,解得:,(舍去).綜上所述,或時,△BDM為直角三角形.21、1【解析】
根據實數的混合計算,先把各數化簡再進行合并.【詳解】原式=1+3-2-3+2=1【點睛】此題主要考查實數的計算,解題的關鍵是將它們化成最簡形式再進行計算.22、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據sin∠BAC=,求出OM,根據cos∠BAC=,求出AM,根據垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點睛】考查了切線的性質和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質,全等三角形的性質和判定等知識點的運用,通過做此題培養了學生的分析問題和解決問題的能力.23、(1)見解析(2)見解析【解析】試題分析:(1)根據平行四邊形的性質,可得AB與CD的關系,根據平行四邊形的判定,可得BFDE是平行四邊形,再根據矩形的判定,可得答案;(2)根據平行線的性質,可得∠DFA=∠FAB,根據等腰三角形的判定與性質,可得∠DAF=∠DFA,根據角平分線的判定,可得答案.試題分析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD.∵BE∥DF,BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【點睛】本題考查了平行四邊形的性質,利用了平行四邊形的性質,矩形的判定,等腰三角形的判定與性質,利用等腰三角形的判定與性質得出∠DAF=∠DFA是解題關鍵.24、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解析】
如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.25、(1)見解析;(2)2.【解析】
(1)根據相似三角形的判定,易證△ABF∽△BEC,從而可以證明∠BAF=∠CBE成立;(2)根據銳角三角函數和三角形的相似可以求得AF的長【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據勾股定理得:BE=∵BC=AD=5,由(1)得:△ABF∽△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 激光跟蹤儀與D掃描技術考核試卷
- 疊拼別墅裝飾施工方案
- 比較分析2025年證券從業資格證考試試題及答案
- 2025年【河北省安全員A證】模擬考試題及答案
- 石油開采業的能源轉型與碳排放削減考核試卷
- 反不正當競爭考核試卷
- 2024年項目管理專業人士考試重要知識點試題及答案
- 屋面鋼模板施工方案
- 2025年關于證券從業資格證的深度探索試題及答案
- 珠寶首飾行業綠色發展策略考核試卷
- 隧道高空作業施工方案
- 雨季三防知識培訓
- 危險性較大的分部分項工程專項施工方案嚴重缺陷清單(試行)
- 2025年上半年第二次商務部國際貿易經濟合作研究院招聘7人重點基礎提升(共500題)附帶答案詳解
- 2025年陜西省土地工程建設集團有限責任公司招聘筆試參考題庫附帶答案詳解
- 第7課《不甘屈辱 奮勇抗爭》第1課時 虎門銷煙 課件 五年級道德與法治下冊 統編版
- DB13-T5742-2023醇基燃料使用安全規范
- 《慢性阻塞性肺疾病的健康宣教》課件
- 江蘇省蘇北四市(徐州、宿遷、淮安、連云港) 2025屆高三第一次調研考試物理試題(含答案)
- 2025年廣投資本管理有限公司招聘筆試參考題庫含答案解析
- 灌漿作業安全操作規程(3篇)
評論
0/150
提交評論