




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省興寧市水口中學高二數學第一學期期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是函數的導函數,的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.2.年月日我國公布了第七次全國人口普查結果.自新中國成立以來,我國共進行了七次全國人口普查,如圖為我國歷次全國人口普查人口性別構成及總人口性別比(以女性為,男性對女性的比例)統計圖,則下列說法錯誤的是()A.第五次全國人口普查時,我國總人口數已經突破億B.第一次全國人口普查時,我國總人口性別比最高C.我國歷次全國人口普查總人口數呈遞增趨勢D.我國歷次全國人口普查總人口性別比呈遞減趨勢3.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.4.已知函數,若對任意,都有成立,則a的取值范圍為()A. B.C. D.5.已知橢圓的左、右焦點分別為,,焦距為,過點作軸的垂線與橢圓相交,其中一個交點為點(如圖所示),若的面積為,則橢圓的方程為()A B.C. D.6.函數圖象如圖所示,則的解析式可以為A. B.C. D.7.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.8.如圖,在空間四邊形OABC中,,,,點N為BC的中點,點M在線段OA上,且OM=2MA,則()A. B.C. D.9.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知點,點在拋物線上,過點的直線與直線垂直相交于點,,則的值為()A. B.C. D.11.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg12.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=0二、填空題:本題共4小題,每小題5分,共20分。13.拋物線上一點到其焦點的距離為,則的值為______14.設空間向量,且,則___________.15.直線恒過定點,則定點坐標為________16.函數的圖象在點處的切線的方程是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值18.(12分)已知數列的前n項和,遞增等比數列滿足,且.(1)求數列,的通項公式;(2)求數列的前n項和為.19.(12分)如圖,點О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點B到平面APQ的距離:(2)設E為棱PC上的點,且,若直線DE與平面APQ所成角的正弦值為,試求實數的值20.(12分)已知雙曲線與有相同的漸近線,且經過點.(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點,且線段的中點在圓上,求實數的值.21.(12分)如圖,在平面直角標系中,已知n個圓與x軸和線均相切,且任意相鄰的兩個圓外切,其中圓.(1)求數列通項公式;(2)記n個圓的面積之和為S,求證:.22.(10分)已知拋物線的頂點為原點,焦點F在x軸的正半軸,F到直線的距離為.點為此拋物線上的一點,.直線l與拋物線交于異于N的兩點A,B,且.(1)求拋物線方程和N點坐標;(2)求證:直線AB過定點,并求該定點坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用導函數的圖象,判斷導函數的符號,得到函數的單調性以及函數的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數是增函數,時,,函數是減函數;是函數的極大值點,是函數的極小值點;所以函數的圖象只能是故選:C2、D【解析】根據統計圖判斷各選項的對錯.【詳解】由統計圖第五次全國人口普查時,男性和女性人口數都超過6億,故總人口數超過12億,A對,由統計圖,第一次全國人口普查時,我國總人口性別比為107.56,超過余下幾次普查的人口的性別比,B對,由統計圖可知,我國歷次全國人口普查總人口數呈遞增趨勢,C對,由統計圖可知,第二次,第三次,第四次,第五次時總人口性別比呈遞增趨勢,D錯,D錯,故選:D.3、B【解析】由已知可設,則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設,則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設,則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標準方程及其簡單性質,考查數形結合思想、轉化與化歸的能力,很好的落實了直觀想象、邏輯推理等數學素養4、C【解析】求出函數的導數,再對給定不等式等價變形,分離參數借助均值不等式計算作答.【詳解】對函數求導得:,,,則,,而,當且僅當,即時“=”,于是得,解得,所以a的取值范圍為.故選:C【點睛】關鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉化,構造函數,利用函數思想是解決問題的關鍵.5、A【解析】由題意可得,令,可得,再由三角形的面積公式,解方程可得,,即可得到所求橢圓的方程【詳解】由題意可得,即,即有,令,則,可得,則,即,解得,,∴橢圓的方程為故選:A6、A【解析】利用排除法:對于B,令得,,即有兩個零點,不符合題意;對于C,當時,,當且僅當時等號成立,即函數在區間上存在最大值,不符合題意;對于D,的定義域為,不符合題意;本題選擇A選項.點睛:函數圖象的識辨可從以下方面入手:(1)從函數的定義域,判斷圖象的左右位置;從函數的值域,判斷圖象的上下位置.(2)從函數的單調性,判斷圖象的變化趨勢.(3)從函數的奇偶性,判斷圖象的對稱性.(4)從函數的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項7、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數項,再計算平行線間的距離即可.【詳解】設與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A8、D【解析】利用空間向量的線性運算即可求解.【詳解】解:∵N為BC的中點,點M在線段OA上,且OM=2MA,且,,,故選:D.9、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.10、D【解析】由題,由于過拋物線上一點的直線與直線垂直相交于點,可得,又,故,所以的坐標為,由余弦定理可得.故選:D.考點:拋物線的定義、余弦定理【點睛】本題主要考查拋物線的定義與性質,考查學生的計算能力,屬于中檔題11、D【解析】根據y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D12、D【解析】設切點為,則切線的斜率為,然后根據條件可得的值,然后可得答案.【詳解】設切點為,因為,所以切線的斜率為因為曲線f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將拋物線方程化為標準方程,利用拋物線的定義將拋物線上的點到焦點的距離轉化為到準線的距離,再利用點到直線的距離公式進行求解.【詳解】將拋物線化為,由拋物線定義得點到準線的距離為,即,解得故答案為:.14、1【解析】根據,由求解.【詳解】因為向量,且,所以,即,解得.故答案為:115、【解析】解方程組可求得定點坐標.【詳解】直線方程可化為,由,可得.故直線恒過定點.故答案為:.16、【解析】求導,求得,,根據直線的點斜式方程求得答案.【詳解】因為,,所以切線的斜率,切線方程是,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)【解析】(1)利用垂直關系,轉化為證明線面垂直,即可證明線線垂直;(2)利用垂直關系,建立空間直角坐標系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點,連結,,,因為,所以,因為平面平面,平面平面,所以平面,且平面,所以,又因為底面時菱形,所以,又因為點分別為的中點,所以,所以,且,所以平面,又因為平面,所以;【小問2詳解】由(1)可知,平面,連結,因為,,點為的中點,所以,則兩兩垂直,以點為坐標原點,建立空間直角坐標系,如圖所示:則,,,所以,,,,,,所以,,,設平面的法向量為,則,令,則,,故,設平面的法向量為,所以,因為二面角為銳二面角,所以二面角的余弦值為.18、(1),(2)【解析】(1)先求,再由求出,設等比數列的公比為q,由條件可得,解出結合條件可得答案.(2)由(1)可得,利用錯位相減法可求【小問1詳解】,當時,,也滿足上式,∴,則.設等比數列的公比為q,由得,解得或.因為是遞增等比數列,所以,.【小問2詳解】①①①②:∴19、(1)(2)或【解析】(1)以三棱錐等體積法求點到面距離,思路簡單快捷.(2)由直線DE與平面APQ所成角的正弦值為,可以列關于的方程,解之即可.【小問1詳解】點О是正四棱錐底面中心,點О是BD的中點,四邊形PQDO矩形,,兩點到平面APQ的距離相等.正四棱錐中,平面,平面,,,設點B到平面APQ的距離為d,則,即解之得,即點B到平面APQ的距離為【小問2詳解】取PC中點N,連接BN、ON、DN,則.平面平面正四棱錐中,,直線平面平面,平面平面,平面平面平面中,點E到直線ON的距離即為點E到平面的距離.中,,點P到直線ON的距離為△中,,設點E到平面的距離為d,則有,則則有,整理得,解之得或20、(1)(2)【解析】(1)根據所求雙曲線與有共同的漸近線可設出所求雙曲線方程為,在根據點在雙曲線上,代入雙曲線方程中即可求解.(2)聯立直線與雙曲線的方程,得關于的一元二次方程,利用韋達定理得出的關系,再根據中點坐標公式求出線段的中點的坐標,代入圓方程即可求解.【小問1詳解】由題意,設雙曲線的方程為,則又因為雙曲線過點,,所以雙曲線的方程為:【小問2詳解】由,消去整理,得,設,則因為直線與雙曲線交于不同的兩點,所以,解得.,所以則中點坐標為,代入圓得,解得.實數的值為21、(1).(2)證明見解析.【解析】(1)由已知得,設圓分別切軸于點,過點作,垂足為.在從而有得,由等比數列的定義得數列是以為首項,為公比的等比數列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數列求和公式計算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設圓分別切軸于點,過點作,垂足為.在中,所以即化簡得,變形得,所以是以為首項,為公比的等比數列.,.【小問2詳解】解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 取芯器企業數字化轉型與智慧升級戰略研究報告
- 筑路設備企業縣域市場拓展與下沉戰略研究報告
- 奶油分離器企業縣域市場拓展與下沉戰略研究報告
- 節能型玻璃制品機械企業ESG實踐與創新戰略研究報告
- 洗車行業運營工作規劃
- 吞吃異物安全教育
- 官兵心理健康教育教案
- 幼兒園清明防火安全教育
- 電壓越限報警器課程設計
- 人教版高中歷史必修二第15課:交通和通訊工具的進步
- 企業健康管理計劃規劃方案討論
- 隧道高空作業施工方案
- 雨季三防知識培訓
- 危險性較大的分部分項工程專項施工方案嚴重缺陷清單(試行)
- 2025年上半年第二次商務部國際貿易經濟合作研究院招聘7人重點基礎提升(共500題)附帶答案詳解
- 深信服超融合HCI技術白皮書-20230213
- 2025年陜西省土地工程建設集團有限責任公司招聘筆試參考題庫附帶答案詳解
- 第7課《不甘屈辱 奮勇抗爭》第1課時 虎門銷煙 課件 五年級道德與法治下冊 統編版
- 《多樣的中國民間美術》課件 2024-2025學年人美版(2024)初中美術七年級下冊
- DB13-T5742-2023醇基燃料使用安全規范
- 《慢性阻塞性肺疾病的健康宣教》課件
評論
0/150
提交評論