2025屆陜西省西安市閻良區數學高三上期末統考試題含解析_第1頁
2025屆陜西省西安市閻良區數學高三上期末統考試題含解析_第2頁
2025屆陜西省西安市閻良區數學高三上期末統考試題含解析_第3頁
2025屆陜西省西安市閻良區數學高三上期末統考試題含解析_第4頁
2025屆陜西省西安市閻良區數學高三上期末統考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆陜西省西安市閻良區數學高三上期末統考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上的偶函數,對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.2.函數在的圖象大致為()A. B.C. D.3.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.4.已知,則的值構成的集合是()A. B. C. D.5.已知數列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-16.設,,則()A. B.C. D.7.已知函數,則的最小值為()A. B. C. D.8.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.9.已知集合,若,則實數的取值范圍為()A. B. C. D.10.將函數圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數圖象的一個對稱中心為()A. B. C. D.11.已知且,函數,若,則()A.2 B. C. D.12.為虛數單位,則的虛部為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若方程的解為,(),則_______;_______.14.直線是曲線的一條切線為自然對數的底數),則實數__________.15.設數列的前項和為,且對任意正整數,都有,則___16.在平面直角坐標系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列是公差不為零的等差數列,其前項和為,,若,,成等比數列.(1)求及;(2)設,設數列的前項和,證明:.18.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設,∠,∠,將沿折起,構成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.19.(12分)設的內角、、的對邊長分別為、、.設為的面積,滿足.(1)求;(2)若,求的最大值.20.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.21.(12分)在直角坐標系中,曲線的參數方程為(為參數),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.22.(10分)已知函數.(1)討論函數的極值;(2)記關于的方程的兩根分別為,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據偶函數的性質和單調性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數所以在上遞減又因為,,所以故選:A【點睛】考查偶函數的性質以及單調性的應用,基礎題.2、B【解析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數,排除C,D;,排除A.故選:B.【點睛】本題考查函數圖象的判斷,屬于常考題.3、B【解析】

根據組合知識,計算出選出的人分成兩隊混合雙打的總數為,然后計算和分在一組的數目為,最后簡單計算,可得結果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數為:和分在一組的數目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.4、C【解析】

對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.5、D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數列的通項公式.6、D【解析】

由不等式的性質及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質及換底公式,屬基礎題.7、C【解析】

利用三角恒等變換化簡三角函數為標準正弦型三角函數,即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數,以及求三角函數的最值,屬綜合基礎題.8、A【解析】

由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設是的中心,則平面,,,外接球球心必在高上,設外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關鍵是由已知條件確定折疊成的三棱錐是正四面體.9、A【解析】

解一元二次不等式化簡集合的表示,求解函數的定義域化簡集合的表示,根據可以得到集合、之間的關系,結合數軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結果求參數取值范圍問題,考查了解一元二次不等式,考查了函數的定義域,考查了數學運算能力.10、D【解析】

先化簡函數解析式,再根據函數的圖象變換規律,可得所求函數的解析式為,再由正弦函數的對稱性得解.【詳解】,

將函數圖象上各點的橫坐標伸長到原來的3倍,所得函數的解析式為,

再向右平移個單位長度,所得函數的解析式為,,可得函數圖象的一個對稱中心為,故選D.【點睛】三角函數的圖象與性質是高考考查的熱點之一,經常考查定義域、值域、周期性、對稱性、奇偶性、單調性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現,在復習時要注意基礎知識的理解與落實.三角函數的性質由函數的解析式確定,在解答三角函數性質的綜合試題時要抓住函數解析式這個關鍵,在函數解析式較為復雜時要注意使用三角恒等變換公式把函數解析式化為一個角的一個三角函數形式,然后利用正弦(余弦)函數的性質求解.11、C【解析】

根據分段函數的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數的應用,由分段函數解析式求自變量.12、C【解析】

利用復數的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數的運算以及復數的概念,注意復數的虛部為,不是,本題為基礎題,也是易錯題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出在上的對稱軸,依據對稱性可得的值;由可得,依據可求出的值.【詳解】解:令,解得因為,所以關于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數的對稱軸,考查了誘導公式,考查了同角三角函數的基本關系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令進行求解.14、【解析】

根據切線的斜率為,利用導數列方程,由此求得切點的坐標,進而求得切線方程,通過對比系數求得的值.【詳解】,則,所以切點為,故切線為,即,故.故答案為:【點睛】本小題主要考查利用導數求解曲線的切線方程有關問題,屬于基礎題.15、【解析】

利用行列式定義,得到與的關系,賦值,即可求出結果。【詳解】由,令,得,解得。【點睛】本題主要考查行列式定義的應用。16、【解析】分析:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數),利用差角的正切公式,結合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數),則∵∠APB的大小恒為定值,

∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關系,考查差角的正切公式,考查學生的計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)證明見解析.【解析】

(1)根據題中條件求出等差數列的首項和公差,然后根據首項和公差即可求出數列的通項和前項和;(2)根據裂項求和求出,根據的表達式即可證明.【詳解】(1)設的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數列基本量的求解,裂項求和法,屬于基礎題.18、(1)證明見解析;(2)【解析】

(1)取AB的中點O,連接,證得,從而證得C′O⊥平面ABD,再結合面面垂直的判定定理,即可證得平面⊥平面;(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設平面的法向量為=(),則,即,代入坐標得,令,得,,所以,設平面的法向量為=(),則,即,代入坐標得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.【點睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學生的空間想象能力和邏輯推理能力,解答中熟記線面位置關系的判定定理和性質定理,通過嚴密推理是線面位置關系判定的關鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.19、(1);(2).【解析】

(1)根據條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當且僅當時取最大值.故的最大值為.【點睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應用,以及利用三角恒等變換求函數的最值,意在考查學生的轉化能力和數學運算能力,屬于基礎題20、(1)詳見解析;(2)詳見解析.【解析】

(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設是中點,連接,由于是中點,所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.【點睛】本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1),;(2).【解析】

(1)在曲線的參數方程中消去參數,可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數方程、極坐標方程與普通方程之間的相互轉換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.22、(1)見解析;(2)見解析【解析】

(1)對函數求導,對參數討論,得函數單調區間,進而求出極值;(2)是方程的兩根,代入方程,化簡換元,構造新函數利用函數單調性求最值可解.【詳解】(1)依題意,;若,則,則函數在上單調遞增,此時函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論