




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省邵陽市邵東縣第三中學2025屆數學高二上期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是雙曲線的左、右焦點,點A是的左頂點,為坐標原點,以為直徑的圓交的一條漸近線于、兩點,以為直徑的圓與軸交于兩點,且平分,則雙曲線的離心率為()A. B.2C. D.32.與圓和圓都外切的圓的圓心在()A.一個圓上 B.一個橢圓上C.雙曲線的一支上 D.一條拋物線上3.甲、乙兩名同學同時從教室出發去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館4.已知橢圓的上下頂點分別為,一束光線從橢圓左焦點射出,經過反射后與橢圓交于點,則直線的斜率為()A. B.C. D.5.已知直線和圓相交于兩點.若,則的值為()A. B.C. D.6.如圖,在三棱錐中,平面ABC,,,,則點A到平面PBC的距離為()A.1 B.C. D.7.已知拋物線上一點M與焦點間的距離是3,則點M的縱坐標為()A.1 B.2C.3 D.48.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.9.下列關系中,正確的是()A. B.C. D.10.設實數x,y滿足,則目標函數的最大值是()A. B.C.16 D.3211.在等差數列中,,,則的取值范圍是()A. B.C. D.12.若函數在區間上單調遞增,則實數的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓:,圓:,則圓與圓的位置關系是______14.用1,2,3,4,5組成沒有重復數字的五位數,其中個位小于百位且百位小于萬位的五位數有n個,則的展開式中,的系數是___________.(用數字作答)15.已知數列的前項和為,則__________.16.已知正四面體ABCD中,E,F分別是線段BC,AD的中點,點G是線段CD上靠近D的四等分點,則直線EF與AG所成角的余弦值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線與雙曲線的漸近線相同,且經過點.(1)求雙曲線的方程;(2)已知雙曲線的左右焦點分別為,直線經過,傾斜角為與雙曲線交于兩點,求的面積.18.(12分)如圖,AB是半圓O的直徑,C是半圓上一點,M是PB的中點,平面ABC,且,,.(1)求證:平面PAC;(2)求三棱錐M—ABC體積.19.(12分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構成的三角形的面積為(1)求橢圓C的標準方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值20.(12分)已知函數.(I)當時,求曲線在處的切線方程;(Ⅱ)若當時,,求的取值范圍.21.(12分)已知拋物線C的頂點在坐標原點,準線方程為(1)求拋物線C的標準方程;(2)若AB是過拋物線C的焦點F的弦,以弦AB為直徑的圓與直線的位置關系是什么?先給出你的判斷結論,再給出你的證明,并作出必要的圖形22.(10分)已知橢圓的左焦點與拋物線的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓于兩點,點,且為定值(1)求橢圓的方程;(2)求面積的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由直徑所對圓周角是直角,結合雙曲線的幾何性質和角平分線定義可解.【詳解】由圓的性質可知,,,所以,因為,所以又因為平分,所以,由,得,所以,即所以故選:B2、C【解析】設動圓的半徑為,然后根據動圓與兩圓都外切得,再兩式相減消去參數,則滿足雙曲線的定義,即可求解.【詳解】設動圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點的軌跡是雙曲線的一支故選:C3、A【解析】設出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A4、B【解析】根據給定條件借助橢圓的光學性質求出直線AD的方程,進而求出點D的坐標計算作答.【詳解】依題意,橢圓的上頂點,下頂點,左焦點,右焦點,由橢圓的光學性質知,反射光線AD必過右焦點,于是得直線AD的方程為:,由得點,則有,所以直線的斜率為.故選:B5、C【解析】求出圓心到直線的距離,再利用,化簡求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.6、A【解析】設點A到平面PBC的距離為,根據等體積法求解即可.【詳解】因為平面ABC,所以,因為,,所以又,,所以,所以,設點A到平面PBC的距離為,則,即,,故選:A7、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點為,準線方程為,因為拋物線上一點M與焦點間的距離是3,所以,得,即點M的縱坐標為2,故選:B8、A【解析】將利用、、表示,再利用空間向量的加法可得出關于、、的表達式,進而可求得的值.【詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.9、B【解析】根據對數函數的性質判斷A,根據指數函數的性質判斷B,根據正弦函數的性質及誘導公式判斷C,根據余弦函數的性質及誘導公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調遞減,因為,所以,又,,因為在上單調遞增,所以,所以,所以,故B正確;對于C:因為在上單調遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調遞減,又,所以,又,所以,故D錯誤;故選:B10、C【解析】求的最大值即求的最大值,根據約束條件畫出可行域,將目標函數看成直線,直線經過可行域內的點,將目標與直線的截距建立聯系,然后得到何時目標值取得要求的最值,進而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據實數,滿足的條件作出可行域,如圖.將目標函數化為.則表示直線在軸上的截距的相反數.要求的最大值,即求直線在軸上的截距最小值.如圖當直線過點時,在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.11、A【解析】根據題設可得關于的不等式,從而可求的取值范圍.【詳解】設公差為,因為,,所以,即,從而.故選:A.12、A【解析】由函數在上單調遞增,可得,從而可求出實數的取值范圍【詳解】由,得,因為函數在區間上單調遞增,所以在區間上恒成立,即恒成立,因為,所以,所以,所以實數的取值范圍為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、相交【解析】把兩個圓的方程化為標準方程,分別找出兩圓的圓心坐標和半徑,利用兩點間的距離公式求出兩圓心的距離,與半徑和與差的關系比較即可知兩圓位置關系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.14、2022【解析】根據排列和組合計數公式求出,然后利用二項式定理進行求解即可【詳解】解:用1,2,3,4,5組成沒有重復數字的五位數中,滿足個位小于百位且百位小于萬位的五位數有個,即,當時,,則系數是,故答案為:202215、【解析】根據題意求得,得到,利用等差數列的求和公式,求得,結合裂項法求和法,即可求解.【詳解】由,可得,即,因為,所以,又因為,所以,可得,所以,所以.故答案為:.16、【解析】建立空間直角坐標系,令正四面體的棱長為,即可求出點的坐標,從而求出異面直線所成角的余弦值;【詳解】解:如圖建立空間直角坐標系,令正四面體的棱長為,則,所以,所以,所以,,,,,設,因為,所以,所以,所以,,設直線與所成角為,則故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據已知有直線為,由其與雙曲線的位置關系,結合弦長公式、點線距離公式及三角形面積公式求的面積.【詳解】(1)設所求雙曲線方程為,代入點得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設,聯立得,滿足且,,由弦長公式得,點到直線的距離.所以【點睛】本題考查了雙曲線,根據雙曲線共漸近線求雙曲線方程,由直線與雙曲線的相交位置關系求原點與交點構成三角形的面積,綜合應用了弦長公式、點線距離公式、三角形面積公式,屬于基礎題.18、(1)證明見解析(2)2【解析】(1)依題意可得,再由平面,得到,即可證明平面;(2)連接,可證,即可得到平面,為三棱錐的高,再根據錐體的體積公式計算可得;【詳解】(1)證明:因為是半圓的直徑,所以.因為平面,平面,所以,又因為平面,平面,且所以平面.(2)解:因為,,所以,.連接.因為、分別是,的中點,所以,.又平面.所以平面.因此為三棱錐的高.所以.【點睛】本題考查線面垂直的證明,錐體的體積的計算,屬于中檔題.19、(1)(2)是,【解析】(1)根據離心率以及橢圓兩個焦點與短軸的一個端點為頂點構成的三角形的面積列出等式即可求解;(2)設出相關直線與相關點的坐標,直線與橢圓聯立,點的坐標配合斜率公式化簡,再運用韋達理化簡可證明.【小問1詳解】由題意得,解得,則橢圓C的標準方程為【小問2詳解】設切線PQ的方程為,,,,,由,消去y得①,則,解得或(舍去),將代入①得,,解得,則,所以,又R為PQ中點,則,因為PA,PB斜率都存在,不妨設,,由①可得,所以,,同理,,則,又R,A,B三點共線,則,化簡得,所以.20、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點斜式可求曲線在處的切線方程為(Ⅱ)構造新函數,對實數分類討論,用導數法求解.試題解析:(I)定義域為.當時,,曲線在處的切線方程為(II)當時,等價于設,則,(i)當,時,,故在上單調遞增,因此;(ii)當時,令得.由和得,故當時,,在單調遞減,因此.綜上,的取值范圍是【考點】導數的幾何意義,利用導數判斷函數的單調性【名師點睛】求函數的單調區間的方法:(1)確定函數y=f(x)定義域;(2)求導數y′=f′(x);(3)解不等式f′(x)>0,解集在定義域內的部分為單調遞增區間;(4)解不等式f′(x)<0,解集在定義域內的部分為單調遞減區間21、(1);(2)相切,證明過程、圖形見解析.【解析】(1)根據拋物線的準線方程,結合拋物線標準方程進行求解即可;(2)設出直線AB的方程與拋物線方程聯立,利用一元二次方程根與系數關系,結合圓的性質進行求解即可.【小問1詳解】因為拋物線C的頂點在坐標原點,準線方程為,所以設拋物線C的標準方程為:,因為該拋物線的準線方程為,所以有,所以拋物線C的標準方程;小問2詳解】以弦AB為直徑的圓與直線相切,理由如下:因為AB是過拋物線C的焦點F的弦,所以直線AB的斜率不為零,設橢圓的焦點坐標為,設直線AB的方程為:,則有,設,則有,因此,所以弦AB為直徑的圓的圓心的橫坐標為:,以弦AB為直徑的圓的直徑為:所以弦AB為直徑的圓的半徑,以弦AB為直徑的圓的圓心到準線的距離為:,所以以弦AB為直徑的圓與直線相切.【點睛】關鍵點睛:利用一元二次方程的根與系數關系是解題的關鍵.22、(1)(2)【解析】(1)由拋物線焦點可得c,再根據離心率可得a,即得b;(2)先設直線方程x=ty+m,根據向量數量積表示,將直線方程與橢圓方程聯立方程組,結合韋達定理代入化簡可得為定值的條件,解出m;根據點到直線距離得三角形的高,利用弦公式可得底,根據面積公式可得關于t的函數,最后根據基本不等式求最值【詳解】試題解析:解:(1)設F1(﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年冷鏈裝備資金需求報告代可行性研究報告
- 2024年養老服務資金需求報告代可行性研究報告
- 2024年商用家具項目投資申請報告代可行性研究報告
- 2024年水電站計算機監控裝置項目資金申請報告代可行性研究報告
- 松原市寧江區2025年八年級《語文》上學期期末試題與參考答案
- 2024年新能源環衛裝備資金籌措計劃書代可行性研究報告
- 2025年中國邊緣行業市場規模及投資前景預測分析報告
- 2025年中國苯乙烯類熱塑性彈性體行業市場前景預測及投資價值評估報告
- 2025年中國辦公室燈具行業市場前景預測及投資價值評估分析報告
- 能源產業園區基礎設施建設補充協議
- 軟件工程監理實施細則10
- 2024年認證行業法律法規及認證基礎知識答案
- (一模)2025年深圳市高三年級第一次調研考試 英語試卷(含標準答案)
- 越南投資環境評價與重點投資區域研究
- 神經內科緊急護理人力資源調配演練記錄
- 湖北省武漢市漢陽區2024-2025學年七年級上學期期末檢測英語試卷(含答案無聽力原文及音頻)
- 《硬科技早期投資-項目評估指南》
- 2025年貴州遵義路橋工程限公司招聘10人高頻重點提升(共500題)附帶答案詳解
- 上海市居住房屋租賃合同范本
- 廣西河池市(2024年-2025年小學六年級語文)部編版小升初模擬(下學期)試卷及答案
- 保潔及會務服務項目技術方案
評論
0/150
提交評論