浙江省金華義烏市2023-2024學年畢業升學考試模擬卷數學卷含解析_第1頁
浙江省金華義烏市2023-2024學年畢業升學考試模擬卷數學卷含解析_第2頁
浙江省金華義烏市2023-2024學年畢業升學考試模擬卷數學卷含解析_第3頁
浙江省金華義烏市2023-2024學年畢業升學考試模擬卷數學卷含解析_第4頁
浙江省金華義烏市2023-2024學年畢業升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省金華義烏市2023-2024學年畢業升學考試模擬卷數學卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知的周長等于,則它的內接正六邊形ABCDEF的面積是()A. B. C. D.2.下列美麗的壯錦圖案是中心對稱圖形的是()A. B. C. D.3.某果園2011年水果產量為100噸,2013年水果產量為144噸,求該果園水果產量的年平均增長率.設該果園水果產量的年平均增長率為x,則根據題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1444.直線AB、CD相交于點O,射線OM平分∠AOD,點P在射線OM上(點P與點O不重合),如果以點P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關系是()A.相離 B.相切 C.相交 D.不確定5.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.6.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點D,交BC于點E,則△ACE的周長為()A.2+ B.2+2 C.4 D.37.若二次函數的圖象經過點(﹣1,0),則方程的解為()A., B., C., D.,8.《九章算術》中有這樣一個問題:“今有甲乙二人持錢不知其數,甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數為50;而甲把其的錢給乙,則乙的錢數也能為50,問甲、乙各有多少錢?設甲的錢數為x,乙的錢數為y,則列方程組為()A. B.C. D.9.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發,垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米10.將下列各選項中的平面圖形繞軸旋轉一周,可得到如圖所示的立體圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.函數中自變量x的取值范圍是_____;函數中自變量x的取值范圍是______.12.已知、為兩個連續的整數,且,則=________.13.一個圓的半徑為2,弦長是2,求這條弦所對的圓周角是_____.14.據報道,截止2018年2月,我國在澳大利亞的留學生已經達到17.3萬人,將17.3萬用科學記數法表示為__________.15.亞洲陸地面積約為4400萬平方千米,將44000000用科學記數法表示為_____.16.如圖,用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽,則這個紙帽的高是_____cm.三、解答題(共8題,共72分)17.(8分)手機下載一個APP、繳納一定數額的押金,就能以每小時0.5到1元的價格解鎖一輛自行車任意騎行,共享單車為解決市民出行的“最后一公里”難題幫了大忙,人們在享受科技進步、共享經濟帶來的便利的同時,隨意停放、加裝私鎖、推車下河、大卸八塊等毀壞共享單車的行為也層出不窮?某共享單車公司一月投入部分自行車進入市場,一月底發現損壞率不低于10%,二月初又投入1200輛進入市場,使可使用的自行車達到7500輛.一月份該公司投入市場的自行車至少有多少輛?二月份的損壞率為20%,進入三月份,該公司新投入市場的自行車比二月份增長4a%,由于媒體的關注,毀壞共享單車的行為點燃了國民素質的大討論,三月份的損壞率下降為a%,三月底可使用的自行車達到7752輛,求a的值.18.(8分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b的圖象與反比例函數y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.19.(8分)如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AB相切于點P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長.20.(8分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉90°畫出旋轉之后的△AB′C′;求線段AC旋轉過程中掃過的扇形的面積.21.(8分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.22.(10分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.23.(12分)某市旅游景區有A、B、C、D、E等著名景點,該市旅游部門統計繪制出2018年春節期間旅游情況統計圖(如圖),根據圖中信息解答下列問題:(1)2018年春節期間,該市A、B、C、D、E這五個景點共接待游客人數為多少?(2)扇形統計圖中E景點所對應的圓心角的度數是,并補全條形統計圖.(3)甲,乙兩個旅行團在A、B、D三個景點中隨機選擇一個,求這兩個旅行團選中同一景點的概率.24.如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.(1)問題發現①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉過程中,BE的最大值為;②當△ADE旋轉至B、D、E三點共線時,線段CD的長為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據等邊三角形的性質可求出OH的長,根據S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數形結合思想的應用.2、A【解析】【分析】根據中心對稱圖形的定義逐項進行判斷即可得.【詳解】A、是中心對稱圖形,故此選項正確;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、不是中心對稱圖形,故此選項錯誤,故選A.【點睛】本題主要考查了中心對稱圖形,熟練掌握中心對稱圖形的定義是解題的關鍵;把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.3、D【解析】試題分析:2013年的產量=2011年的產量×(1+年平均增長率)2,把相關數值代入即可.解:2012年的產量為100(1+x),2013年的產量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點評:考查列一元二次方程;得到2013年產量的等量關系是解決本題的關鍵.4、A【解析】

根據角平分線的性質和點與直線的位置關系解答即可.【詳解】解:如圖所示;∵OM平分∠AOD,以點P為圓心的圓與直線AB相離,∴以點P為圓心的圓與直線CD相離,故選:A.【點睛】此題考查直線與圓的位置關系,關鍵是根據角平分線的性質解答.5、C【解析】

先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據等邊三角形的性質求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點睛】本題考查切線長定理,掌握切線長定理是解題的關鍵.6、B【解析】分析:根據線段垂直平分線的性質,把三角形的周長問題轉化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長=AC+AE+CE=AC+BC=2+2,故選B.點睛:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.7、C【解析】

∵二次函數的圖象經過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.8、A【解析】

設甲的錢數為x,人數為y,根據“若乙把其一半的錢給甲,則甲的錢數為50;而甲把其的錢給乙,則乙的錢數也能為50”,即可得出關于x,y的二元一次方程組,此題得解.【詳解】解:設甲的錢數為x,乙的錢數為y,依題意,得:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,找準等量關系,正確列出二元一次方程組是解題的關鍵.9、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.10、A【解析】分析:面動成體.由題目中的圖示可知:此圓臺是直角梯形轉成圓臺的條件是:繞垂直于底的腰旋轉.詳解:A、上面小下面大,側面是曲面,故本選項正確;B、上面大下面小,側面是曲面,故本選項錯誤;C、是一個圓臺,故本選項錯誤;D、下面小上面大側面是曲面,故本選項錯誤;故選A.點睛:本題考查直角梯形轉成圓臺的條件:應繞垂直于底的腰旋轉.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠2x≥3【解析】

根據分式的意義和二次根式的意義,分別求解.【詳解】解:根據分式的意義得2-x≠0,解得x≠2;根據二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【點睛】數自變量的范圍一般從幾個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為0;(3)當函數表達式是二次根式時,被開方數為非負數.12、11【解析】

根據無理數的性質,得出接近無理數的整數,即可得出a,b的值,即可得出答案.【詳解】∵a<<b,a、b為兩個連續的整數,

∴,

∴a=5,b=6,

∴a+b=11.

故答案為11.【點睛】本題考查的是估算無理數的大小,熟練掌握無理數是解題的關鍵.13、60°或120°【解析】

首先根據題意畫出圖形,過點O作OD⊥AB于點D,通過垂徑定理,即可推出∠AOD的度數,求得∠AOB的度數,然后根據圓周角定理,即可推出∠AMB和∠ANB的度數.【詳解】解:如圖:連接OA,過點O作OD⊥AB于點D,OA=2,AB=,AD=BD=,AD:OA=:2,∠AOD=,∠AOB=,∠AMB=,∠ANB=.故答案為:或.【點睛】本題主要考查垂徑定理與圓周角定理,注意弦所對的圓周角有兩個,他們互為補角.14、1.73×1.【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將17.3萬用科學記數法表示為1.73×1.故答案為1.73×1.【點睛】本題考查了正整數指數科學計數法,根據科學計算法的要求,正確確定出a和n的值是解答本題的關鍵.15、4.4×1【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:44000000=4.4×1,故答案為4.4×1.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.16、【解析】

先求出扇形弧長,再求出圓錐的底面半徑,再根據勾股定理即可出圓錐的高.【詳解】圓心角為120°,半徑為6cm的扇形的弧長為4cm∴圓錐的底面半徑為2,故圓錐的高為=4cm【點睛】此題主要考查圓的弧長及圓錐的底面半徑,解題的關鍵是熟知圓的相關公式.三、解答題(共8題,共72分)17、(1)7000輛;(2)a的值是1.【解析】

(1)設一月份該公司投入市場的自行車x輛,根據損壞率不低于10%,可得不等量關系:一月初投入的自行車-一月底可用的自行車≥一月損壞的自行車列不等式求解;(2)根據三月底可使用的自行車達到7752輛,可得等量關系為:(二月份剩余的可用自行車+三月初投入的自行車)×三月份的損耗率=7752輛列方程求解.【詳解】解:(1)設一月份該公司投入市場的自行車x輛,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份該公司投入市場的自行車至少有7000輛;(2)由題意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣a%)=7752,化簡,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵,解得a<80,∴a=1,答:a的值是1.【點睛】本題考查了一元一次不等式和一元二次方程的實際應用,根據一月底的損壞率不低于10%找出不等量關系式解答(1)的關鍵;根據三月底可使用的自行車達到7752輛找出等量關系是解答(2)的關鍵.18、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】

(1)利用反比例函數圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數法即可求出直線AB的解析式;(1)根據函數圖像判斷即可;(3)利用一次函數圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數圖像可知,當kx+b>時,-6<x<0或1<x;(3)當y=x+1=0時,x=-4,∴點C(-4,0).設點P的坐標為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標為(-6,0)或(-1,0).【點睛】本題考查了反比例函數與一次函數的交點問題、一次(反比例)函數圖象上點的坐標特征、待定系數法求一次函數解析式以及三角形的面積,解題的關鍵是:(1)根據點的坐標利用待定系數法求出直線AB的解析式;(1)根據函數圖像判斷不等式取值范圍;(3)根據三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.19、(1)證明見解析;(2).【解析】試題分析:(1)連接OP,首先證明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;

(2)作PH⊥AB于H.首先證明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解決問題.試題解析:(1)連接OP,∵AC是⊙O的切線,∴OP⊥AC,∴∠APO=∠ACB=90°,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC;(2)作PH⊥AB于H.則∠AHP=∠BHP=∠ACB=90°,又∵∠PBC=∠OBP,PB=PB,∴△PBC≌△PBH,∴PC=PH=1,BC=BH,在Rt△APH中,AH=,在Rt△ACB中,AC2+BC2=AB2∴(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得.20、.(1)見解析(2)【解析】

(1)根據網格結構找出點B、C旋轉后的對應點B′、C′的位置,然后順次連接即可.(2)先求出AC的長,再根據扇形的面積公式列式進行計算即可得解.【詳解】解:(1)△AB′C′如圖所示:(2)由圖可知,AC=2,∴線段AC旋轉過程中掃過的扇形的面積.21、(2)見解析;(2)2+.【解析】

(2)連接OC,根據圓周角定理、切線的性質得到∠ACO=∠DCB,根據CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據等角對等邊證明;

(2)連接AE,過點B作BF⊥CE于點F,根據勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質、圓周角定理、勾股定理,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.22、木竿PQ的長度為3.35米.【解析】

過N點作ND⊥PQ于D,則四邊形DPMN為矩形,根據矩形的性質得出DP,DN的長,然后根據同一時刻物高與影長成正比求出QD的長,即可得出PQ的長.試題解析:【詳解】解:過N點作ND⊥PQ于D,則四邊形DPMN為矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的長度為3.35米.【點睛】本題考查了相似三角形的應用,作出輔助線,根據同一時刻物高與影長成正比列出比例式是解決此題的關鍵.23、(1)50萬人;(2)43.2°;統計圖見解析(3).【解析】

(1)根據A景點的人數以及百分比進行計算即可得到該市景點共接待游客數;(2)先用360°乘以E的百分比求得E景點所對應的圓心角的度數,再根據B、D景點接待游客數補全條形統計圖;(3)根據甲、乙兩個旅行團在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據概率公式進行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市景點共接待游客數為:15÷30%=50(萬人);(2)扇形統計圖中E景點所對應的圓心角的度數是:×360°=43.2°,B景點的人數為50×24%=12(萬人)、D景點的人數為50×18%=9(萬人),補全條形統計圖如下:故答案為43.2°;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論