




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省南昌市蓮塘一中數學高二上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平行六面體的各棱長均相等,,,則異面直線與所成角的余弦值為()A. B.C. D.2.若函數在上有且僅有一個極值點,則實數的取值范圍為()A. B.C. D.3.為迎接2022年冬奧會,某校在體育冰球課上加強冰球射門訓練,現從甲、乙兩隊中各選出5名球員,并分別將他們依次編號為1,2,3,4,5進行射門訓練,他們的進球次數如折線圖所示,則在這次訓練中以下說法正確的是()A.甲隊球員進球的中位數比乙隊大 B.乙隊球員進球的中位數比甲隊大C.乙隊球員進球水平比甲隊穩定 D.甲隊球員進球數的極差比乙隊小4.2021年是中國共產黨百年華誕,3月24日,中宣部發布中國共產黨成立100周年慶祝活動標識(如圖1).其中“100”的兩個“0”設計為兩個半徑為R的相交大圓,分別內含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.5.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.6.圓的圓心和半徑分別是()A. B.C. D.7.已知函數的導函數的圖像如圖所示,則下列說法正確的是()A.是函數的極大值點B.函數在區間上單調遞增C.是函數的最小值點D.曲線在處切線的斜率小于零8.已知是橢圓的左焦點,為橢圓上任意一點,點坐標為,則的最大值為()A. B.13C.3 D.59.已知命題:△中,若,則;命題:函數,,則的最大值為.則下列命題是真命題的是()A. B.C. D.10.已知斜三棱柱所有棱長均為2,,點、滿足,,則()A. B.C.2 D.11.已知橢圓:與雙曲線:有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則的最大值為()A. B.C. D.12.過點,的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或4二、填空題:本題共4小題,每小題5分,共20分。13.已知直線l:和圓C:,過直線l上一點P作圓C的一條切線,切點為A,則的最小值為______14.已知函數則的值為.____15.已知數列滿足,記,則______;數列的通項公式為______.16.已知三棱錐中,平面BCD,,,,則三棱錐的外接球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在正方體中,,,分別是,,的中點.(1)證明:平面平面;(2)求直線與所成角的正切值.18.(12分)已知雙曲線C:的離心率為,過點作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點A,B,且A,B兩點都在以點為圓心的同一圓上,求m的取值范圍19.(12分)如圖,在直三棱柱中,,,,,分別為,的中點(1)求證:;(2)求直線與平面所成角的正弦值20.(12分)在平面直角坐標系xOy中,點A(2,4),直線l:,設圓C的半徑為1,圓心在直線l上,圓心也在直線上.(1)求圓C的方程;(2)過點A作圓C的切線,求切線的方程.21.(12分)為了解某市家庭用電量的情況,該市統計局調查了若干戶居民去年一年的月均用電量(單位:),得到如圖所示的頻率分布直方圖.(1)估計月均用電量的眾數;(2)求a的值;(3)為了既滿足居民的基本用電需求,又提高能源的利用效率,市政府計劃采用階梯電價,月均用電量不高于平均數的為第一檔,高于平均數的為第二檔,已知某戶居民月均用電量為,請問該戶居民應該按那一檔電價收費,說明理由.22.(10分)已知,兩地的距離是.根據交通法規,,兩地之間的公路車速(單位:)應滿足.假設油價是7元/,以的速度行駛時,汽車的耗油率為,當車速為時,汽車每小時耗油,司機每小時的工資是91元.(1)求的值;(2)如果不考慮其他費用,當車速是多少時,這次行車的總費用最低?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用基底向量表示出向量,,即可根據向量夾角公式求出【詳解】如圖所示:不妨設棱長為1,,,所以==,,,即,故異面直線與所成角的余弦值為故選:B注意事項:1.將答案寫在答題卡上2.本卷共10小題,共80分.2、C【解析】根據極值點的意義,可知函數的導函數在上有且僅有一個零點.結合零點存在定理,即可求得的取值范圍.【詳解】函數則因為函數在上有且僅有一個極值點即在上有且僅有一個零點根據函數零點存在定理可知滿足即可代入可得解得故選:C【點睛】本題考查了函數極值點的意義,函數零點存在定理的應用,屬于中檔題.3、C【解析】根據折線圖,求出甲乙中位數、平均數及方差、極差,即可判斷各選項的正誤.【詳解】由題圖,甲隊數據從小到大排序為,乙隊數據從小到大排序為,所以甲乙兩隊的平均數都為5,甲、乙進球中位數相同都為5,A、B錯誤;甲隊方差為,乙隊方差為,即,故乙隊球員進球水平比甲隊穩定,C正確.甲隊極差為6,乙隊極差為4,故甲隊極差比乙隊大,D錯誤.故選:C4、C【解析】作出圖形,進而根據勾股定理并結合圓與圓的位置關系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.5、B【解析】根據給定條件建立空間直角坐標系,令,用表示出點E,F坐標,再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標系,則,,設,則,設,有,線段EF長最短,必滿足,則有,解得,即,因此,,當且僅當時取“=”,所以線段EF長的最小值為.故選:B6、B【解析】將圓的方程化成標準方程,即可求解.【詳解】解:.故選:B.7、B【解析】根據導函數的圖象,得到函數的單調區間與極值點,即可判斷;【詳解】解:由導函數的圖象可知,當時,當時,當時,當或時,則在上單調遞增,在上單調遞減,所以函數在處取得極小值即最小值,所以是函數的極小值點與最小值點,因為,所以曲線在處切線的斜率大于零,故選:B8、B【解析】利用橢圓的定義求解.【詳解】如圖所示:,故選:B9、A【解析】由三角形內角及正弦函數的性質判斷、的真假,應用換元法令,結合對勾函數的性質確定的值域即知、的真假,根據各選項復合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.10、D【解析】以向量為基底向量,則,根據條件由向量的數量積的運算性質,兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D11、B【解析】不妨設點為第一象限的交點,結合橢圓與雙曲線的定義得到,進而結合余弦定理得到,即,令然后結合三角函數即可求出結果.【詳解】不妨設點為第一象限的交點,則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當時,有最大值,最大值為,故選:B.【點睛】一、橢圓的離心率是橢圓最重要的幾何性質,求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據一個條件得到關于a,b,c的齊次式,結合b2=a2-c2轉化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據一個條件得到關于a,b,c的齊次式,結合b2=c2-a2轉化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)12、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學生對該知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】求出圓C的圓心坐標、半徑,再借助圓的切線性質及勾股定理列式計算作答.【詳解】圓C:,圓心為,半徑,點C到直線l的距離,由圓的切線性質知:,當且僅當,即點P是過點C作直線l的垂線的垂足時取“=”,所以的最小值為1故答案為:114、-1【解析】詳解】試題分析:由題意,得,所以,解得,所以考點:導數的運算15、①.②..【解析】結合遞推公式計算出,即可求出的值;證得數列是以3為首項,2為公比的等比數列,即可求出結果.【詳解】因為,所以,,,因此,由于,又,即,所以,因此數列是以3為首項,2為公比的等比數列,則,即,故答案為:;.16、【解析】由題意可知三棱錐的外接球即為三棱柱的外接球,進而求出三棱柱的外接球的半徑即可得出結果.【詳解】因為,,所以,故,又因為平面BCD,因此三棱錐的外接球即為三棱柱的外接球,如圖:取的中點,則為外接圓的圓心,取的中點,則為外接圓的圓心,則的中點即為外接球的球心,因此,,因此,所以三棱錐的外接球的表面積為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)分別證明∥平面,∥平面,最后利用面面平行的判定定理證明平面∥平面即可;(2)由∥得即為直線與所成角,在直角△即可求解.【小問1詳解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小問2詳解】由(1)得∥,∴為直線MN與所成的角,設正方體的棱長為a,在△中,,,∴.18、(1)(2)或【解析】(1)利用雙曲線離心率、點在雙曲線上及得到關于、、的方程組,進而求出雙曲線的標準方程;(2)聯立直線和雙曲線的方程,得到關于的一元二次方程,利用直線和雙曲線的位置關系、根與系數的關系得到兩個交點坐標間的關系,利用A,B兩點都在以點為圓心的同一圓上得到,再利用向量的數量積為0得到、的關系,進而消去得到的不等式進行求解.【小問1詳解】解:因為過點作垂直于x軸的直線截雙曲線C所得弦長為,所以點在雙曲線上,由題意,得,解得,,,即雙曲線的標準方程為.【小問2詳解】解:聯立,得,因為直線與該雙曲線C交于不同的兩點,所以且,即且,設,,的中點,則,,因為A,B兩點都在以點為圓心的同一圓上,所以,即,因為,,所以,即,將代入,得,解得或,即m的取值范圍為或.19、(1)證明見解析(2)【解析】(1)利用空間向量求出空間直線的向量積,即可證明兩直線垂直.(2)利用空間向量求直線與平面所成空間角的正弦就是就出平面的法向量與直線的方向向量之間夾角的余弦即可.【小問1詳解】如圖,以為坐標原點,,,所在直線為,,軸,建立空間直角坐標系,則,,,,,因為,,所以,即;【小問2詳解】設平面的法向量為因為,由,得,令,則所以平面的一個法向量為,又所以故直線與平面所成角的正弦值為20、(1)(2)或【解析】(1)直接求出圓心的坐標,寫出圓的方程;(2)分斜率存在和斜率不存在進行分類討論,利用幾何法列方程,即可求解.【小問1詳解】由圓心C在直線l:上可設:點,又C也在直線上,∴,∴又圓C的半徑為1,∴圓C的方程為.【小問2詳解】當直線垂直于x軸時,與圓C相切,此時直線方程為.當直線與x軸不垂直時,設過A點的切線方程為,即,則,解得.此時切線方程,.綜上所述,所求切線為或21、(1)175(2)0.004(3)該居民該戶居民應該按第二檔電價收費,理由見解析【解析】(1)在區間對應的小矩形最高,由此能求出眾數;(2)利用各個區間的頻率之和為1,即可求出值;(3)求出月均用電量的平均數的估計值即可判斷.【小問1詳解】由題知,月均用電量在區間內的居民最多,可以將這個區間的中點175作為眾數的估計值,所以眾數的估計值為175.【小問2詳解】由題知:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025園林景觀設計合同
- 2025年HED-系列厚膜陰極電泳涂料項目建議書
- 2025合同電纜橋架安裝規范
- 2025安置房的買賣合同
- 2025方案設計委托合同范本方案設計委托合同格式
- 2025職場英語口語熟練運用合同條款
- 2025年月桂醇聚醚磷酸鉀項目建議書
- 2025長期重大疾病保險合同示范文本
- 2025合同簽訂要點全面解析
- 2025版本的鐵路交通運輸合同示范文本
- 集體備課培訓講座
- 危廢處置方案
- 2025年全國會展策劃師崗位職業技能資格知識考試題庫與答案
- 貴州省考試院2025年4月高三年級適應性考試歷史試題及答案
- 兒童暴發性心肌炎診治專家建議(2025)解讀課件
- GB/T 320-2025工業用合成鹽酸
- 企業危險源辨識與風險評估降低風險措施清單
- 天鵝藝術漆施工方案
- 腦卒中患者口腔健康素養的研究進展
- 廣東省廣州市白云區2024-2025學年高三下學期2月統測英語試卷(含答案)
- 2025至2030年中國煤氣渣數據監測研究報告
評論
0/150
提交評論