河北省衡水市安平縣安平中學2025屆數學高二上期末聯考試題含解析_第1頁
河北省衡水市安平縣安平中學2025屆數學高二上期末聯考試題含解析_第2頁
河北省衡水市安平縣安平中學2025屆數學高二上期末聯考試題含解析_第3頁
河北省衡水市安平縣安平中學2025屆數學高二上期末聯考試題含解析_第4頁
河北省衡水市安平縣安平中學2025屆數學高二上期末聯考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省衡水市安平縣安平中學2025屆數學高二上期末聯考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.2.已知函數,若對任意,都有成立,則a的取值范圍為()A. B.C. D.3.已知集合,集合或,是實數集,則()A. B.C. D.4.是等差數列,且,,則的值()A. B.C. D.5.如圖,四棱錐的底面是矩形,設,,,是棱上一點,且,則()A. B.C. D.6.設,,若,其中是自然對數底,則()A. B.C. D.7.若等比數列中,,,那么()A.20 B.18C.16 D.148.在數列中,,,則()A.985 B.1035C.2020 D.20709.已知,,若,則實數的值為()A. B.C. D.210.已知為等差數列,且,,則()A. B.C. D.11.下列四個命題中為真命題的是()A.設p:1<x<2,q:2x>1,則p是q的必要不充分條件B.命題“”的否定是“”C.函數的最小值是4D.與的圖象關于直線y=x對稱12.已知,為雙曲線的兩個焦點,點P在雙曲線上且滿足,那么點P到x軸的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,用四種不同的顏色分別給A,B,C,D四個區域涂色,相鄰區域必須涂不同顏色,若允許同一種顏色多次使用,則不同的涂色方法的種數為______(用數字作答)14.已知函數滿足:①是奇函數;②當時,.寫出一個滿足條件的函數________15.不等式是的解集為______16.已知圓,圓,則兩圓的公切線條數是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,是邊長為2的等邊三角形,,O是BC的中點,(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點,當時,二面角E-BD-C大小為60°,求t的值18.(12分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和(Ⅰ)求k的值及f(x)的表達式(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值19.(12分)已知函數f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內的最值.20.(12分)已知函數(1)求在點處的切線方程(2)求直線與曲線圍成的封閉圖形的面積21.(12分)記為等差數列的前n項和,已知.(1)求的通項公式;(2)求的最小值.22.(10分)已知,直線過且與交于兩點,過點作直線的平行線交于點(1)求證:為定值,并求點的軌跡的方程;(2)設動直線與相切于點,且與直線交于點,在軸上是否存在定點,使得以為直徑的圓恒過定點?若存在,求出的坐標;若不存在,說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據給定條件建立空間直角坐標系,令,用表示出點E,F坐標,再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標系,則,,設,則,設,有,線段EF長最短,必滿足,則有,解得,即,因此,,當且僅當時取“=”,所以線段EF長的最小值為.故選:B2、C【解析】求出函數的導數,再對給定不等式等價變形,分離參數借助均值不等式計算作答.【詳解】對函數求導得:,,,則,,而,當且僅當,即時“=”,于是得,解得,所以a的取值范圍為.故選:C【點睛】關鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉化,構造函數,利用函數思想是解決問題的關鍵.3、A【解析】先化簡集合,再由集合的交集、補集運算求解即可【詳解】,或,故故選:A4、B【解析】根據等差數列的性質計算【詳解】因為是等差數列,所以,,也成等差數列,所以故選:B5、B【解析】根據空間向量基本定理求解【詳解】由已知故選:B6、A【解析】利用函數的單調性可得正確的選項.【詳解】令,因為均為,故為上的增函數,由可得,故,故選:A.7、B【解析】利用等比數列的基本量進行計算即可【詳解】設等比數列的公比為,則,所以故選:B8、A【解析】根據累加法得,,進而得.【詳解】解:因為所以,當時,,,……,,所以,將以上式子相加得,所以,,.當時,,滿足;所以,.所以.故選:A9、D【解析】由,然后根據向量數量積的坐標運算即可求解.【詳解】解:因,,所以,因為,所以,即,解得,故選:D.10、B【解析】由已知條件求出等差數列的公差,從而可求出【詳解】設等差數列的公差為,由,,得,解得,所以,故選:B11、D【解析】根據推出關系和集合的包含關系判斷A,根據全稱命題的否定形式可判斷B,根據對鉤函數性質即三角函數的性質可判斷C,根據反函數的圖像性質可判斷D.【詳解】解:對于選項A:是的真子集,所以命題p是q的充分不必要條件,故A錯誤;對于選項B:命題“”的否定是“”,故B錯誤;對于選項C:函數,當時,,函數單調遞減,當時取最小值,故C錯誤;對于選項D:與互為反函數,故圖象關于直線y=x對稱,故D正確.12、D【解析】設,由雙曲線的性質可得的值,再由,根據勾股定理可得的值,進而求得,最后利用等面積法,即可求解【詳解】設,,為雙曲線的兩個焦點,設焦距為,,點P在雙曲線上,,,,,,的面積為,利用等面積法,設的高為,則為點P到x軸的距離,則,故選:D【點睛】本題考查雙曲線的性質,難度不大.二、填空題:本題共4小題,每小題5分,共20分。13、48【解析】由已知按區域分四步,然后給,,,區域分步選擇顏色,由此即可求解【詳解】解:由已知按區域分四步:第一步區域有4種選擇,第二步區域有3種選擇,第三步區域有2種選擇,第四步區域也有2種選擇,則由分步計數原理可得共有種,故答案為:4814、(答案不唯一)【解析】利用函數的奇偶性及其單調性寫出函數解析式即可.【詳解】結合冪函數的性質可知是奇函數,當時,,則符合上述兩個條件,故答案為:(答案不唯一).15、【解析】由可得,結合分式不等式的解法即可求解.【詳解】由可得,整理可得:,則,解可得:.所以不等式是的解集為:.故答案為:.16、【解析】首先把圓的一般方程化為標準方程,進一步求出兩圓的位置關系,可得兩圓的公切線條數.【詳解】解:由圓,可得:,可得其圓心為,半徑為;由,可得,可得其圓心為,半徑為2;所以可得其圓心距為:,可得:,故兩圓相交,其公切線條數為,故答案為:2.【點睛】本題主要考查兩圓的位置關系及兩圓公切線條數的判斷,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)3【解析】(1)證得平面BCD,結合面面垂直判定定理即可得出結論;(2)建立空間直角坐標系,利用空間向量求二面角的公式可得,進而解方程即可求出結果.【小問1詳解】因為,O是BC的中點,所以,又因為,且,平面BCD,平面BCD,所以平面BCD,因為平面ABC,所以平面平面BCD【小問2詳解】連接OD,又因為是邊長為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O為坐標原點,OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標系設,則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因為A-BCD的體積為,所以,解得,即A(0,0,3),,∵,∴,設平面BCD的法向量為,,則,取平面BCD的法向量為,,,設是平面BDE的法向量,則,∴取平面BDE的法向量,解得或(舍)18、,因此.,當隔熱層修建厚時,總費用達到最小值70萬元【解析】解:(Ⅰ)設隔熱層厚度為,由題設,每年能源消耗費用為.再由,得,因此.而建造費用為最后得隔熱層建造費用與20年的能源消耗費用之和為(Ⅱ),令,即.解得,(舍去)當時,,當時,,故是的最小值點,對應的最小值為當隔熱層修建厚時,總費用達到最小值為70萬元19、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對函數求導,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,結合方程的根與系數關系可求,(2)由(1)可求,然后結合導數可判斷函數的單調性,進而可求函數的最值.【詳解】解:(1)=3ax2+2bx﹣3,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,則,解可得a,b=-1,(2)由(1),易得f(x)在,單調遞增,在上單調遞減,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【點睛】本題考查利用極值求函數的參數,以及利用導數求函數的最值問題,屬于中檔題20、(1)(2)2【解析】(1)首先求出函數的導函數,即可求出切線的斜率,再利用點斜式求出切線方程;(2)首先求出兩函數的交點坐標,再利用定積分及微積分基本定理計算可得;【小問1詳解】解:因為,所以,所以切線的斜率,切線過點,切線的方程為,即【小問2詳解】解:由題知,即解得或,即或或,直線與曲線于則所求圖形的面積21、(1)(2)【解析】(1)設數列的公差為d,由,利用等差數列的前n項和公式求解;(2)利用等差數列的前n項和公式結合二次函數的性質求解.【小問1詳解】解:設數列的公差為d,∵,∴,解得2,∴.【小問2詳解】由(1)知2,∴,,,∴當時,取得最小值-16.22、(1)證明見解析,()(2)存在,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論