




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PAGE7-核心素養測評三十五合情推理與演繹推理(20分鐘40分)一、選擇題(每小題5分,共25分)1.(2024·欽州模擬)平面內,圓有如下性質:“圓心與弦(非直徑)中點的連線垂直于弦”,由此類比可以得到空間中,球有如下性質 ()A.球心與弦(非直徑)的中點連線垂直于弦B.球心與該球小圓圓心的連線垂直于小圓C.與球心距離相等的弦長相等D.與球心距離相等的小圓面積相等【解析】選B.圓心對應球心,弦對應小圓,弦中點對應小圓圓心,依據類比推理則有:球心與該球小圓圓心的連線垂直于小圓.2.設三角形ABC的三邊長分別為a,b,c,面積為S,內切圓半徑為r,則r=QUOTE;類比這個結論可知:若四面體S-ABC的四個面的面積分別為S1,S2,S3,S4,內切球的半徑為r,四面體S-ABC的體積為V,則r等于 ()A.QUOTE B.QUOTEC.QUOTE D.QUOTE【解析】選C.設四面體的內切球的球心為O,則V=VO-ABC+VO-SAB+VO-SAC+VO-SBC,即V=QUOTES1r+QUOTES2r+QUOTES3r+QUOTES4r,所以r=QUOTE.3.(2024·安慶模擬)某中學在高二下學期開設四門數學選修課,分別為《數學史選講》《球面上的幾何》《對稱與群》《矩陣與變換》.現有甲、乙、丙、丁四位同學從這四門選修課程中選修一門,且這四位同學選修的課程互不相同,下面關于他們選課的一些信息:①甲同學和丙同學均不選《球面上的幾何》,也不選《對稱與群》:②乙同學不選《對稱與群》,也不選《數學史選講》:③假如甲同學不選《數學史選講》,那么丁同學就不選《對稱與群》.若這些信息都是正確的,則丙同學選修的課程是 ()A.《數學史選講》 B.《球面上的幾何》C.《對稱與群》 D.《矩陣與變換》【解析】選D.由信息①可得,甲、丙選擇《矩陣與變換》和《數學史選講》;由信息②可得,乙選擇《矩陣與變換》或《球面上的幾何》.第一種可能:當甲選擇《矩陣與變換》時,則丙選擇《數學史選講》,乙選擇《球面上的幾何》,丁選擇《對稱與群》,與信息③沖突,不合題意;其次種可能:當甲選擇《數學史選講》時,則丙選擇《矩陣與變換》,乙選擇《球面上的幾何》,丁選擇《對稱與群》,符合題意.綜上可得丙同學選修的課程是《矩陣與變換》.【變式備選】在一次數學單元測驗中,甲、乙、丙、丁四名考生只有一名獲得了滿分.這四名考生的對話如下,甲:我沒考滿分;乙:丙考了滿分;丙:丁考了滿分;丁:我沒考滿分,其中只有一名考生說的是真話,則考得滿分的考生是 ()A.甲 B.乙 C.丙 D.丁【解析】選A.若甲考滿分,則甲、乙、丙說的都是假話,丁說的是真話,符合題意;若乙考滿分,則乙、丙說的是假話,甲和丁說的是真話,不合題意;若丙考滿分,則甲、乙、丁說的都是真話,丙說的是假話,不合題意;若丁考滿分,則甲、丙說的真話,乙、丁說的假話,不合題意.綜上,甲考滿分.4.我國的刺繡有著悠久的歷史,如圖所示的(1)(2)(3)(4)為刺繡最簡潔的四個圖案,這些圖案都是由小正方形構成,小正方形個數越多刺繡越美麗.現按同樣的規律刺繡(小正方形的擺放規律相同),設第n個圖形包含f(n)個小正方形,則f(n)的表達式為 ()A.f(n)=2n-1 B.f(n)=2n2C.f(n)=2n2-2n D.f(n)=2n2-2n+1【解析】選D.我們考慮f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,…,結合圖形不難得到f(n)-f(n-1)=4(n-1),累加得f(n)-f(1)=2n(n-1)=2n2-2n,故f(n)=2n2-2n+1.5.(2024·瀘州模擬)已知數列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,….其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,以此類推,記此數列為{an},則a2019= ()世紀金榜導學號A.1B.2C.4D.8【解析】選C.將所給的數列分組:第1組為20,第2組為20,21,第三組為:20,21,22,…,則數列的前n組共有QUOTE項,由于QUOTE=2016,故數列的前63組共有2016項,數列的第2017項為20,數列的第2018項為21,數列的第2019項為22,所以a2019=4.二、填空題(每小題5分,共15分)6.(2024·豐臺模擬)已知數列{an}的通項an=2n-1,把{an}中的各項依據肯定的依次排列成如圖所示的三角形數陣.135791113151719……(1)數陣中第5行全部項的和為________________.
(2)2019是數陣中第i行的第j列,則i+j=________________.
【解析】(1)21+23+25+27+29=125.(2)2n-1=2019,n=1010,1+2+3+…+44=990,故i=44+1=45,j=1010-990=20,i+j=65.答案:(1)125(2)657.(2024·孝感模擬)二維空間中,圓的一維測度(周長)l=2πr,二維測度(面積)S=πr2,三維空間中,球的二維測度(表面積)S=4πr2,三維測度(體積)V=QUOTEπr3,應用合情推理,若四維空間中,“超球”的三維測度V=8πr3,則其四維測度W=________________.
【解析】二維空間中,圓的一維測度(周長)l=2πr,二維測度(面積)S=πr2,(πr2)′=2πr,三維空間中,球的二維測度(表面積)S=4πr2,三維測度(體積)V=QUOTEπr3,QUOTE′=4πr2,四維空間中,“超球”的三維測度V=8πr3,因為(2πr4)′=8πr3,所以“超球”的四維測度W=2πr4.答案:2πr48.(2024·佛山模擬)我國古代數學名著《九章算術》記載:“勾股各自乘,并之,為弦實”,用符號表示為a2+b2=c2(a,b,c∈N*),把a,b,c叫做勾股數.下列給出幾組勾股數:3,4,5;5,12,13;7,24,25;9,40,41,以此類推,可揣測第5組勾股數的其次個數是________________. 世紀金榜導學號
【解析】由前四組勾股數可得第五組的第一個數為11,其次、三個數為相鄰的兩個整數,可設為x,x+1,所以(x+1)2=112+x2,即x=60,所以第5組勾股數的三個數依次是11,60,61.答案:60(15分鐘25分)1.(5分)圖①是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖②是第1代“勾股樹”,重復圖②的作法,得到圖③為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第n代“勾股樹”全部正方形的面積的和為 ()A.n B.n2 C.n-1 D.n+1【解析】選D.最大的正方形面積為1,當n=1時,由勾股定理知正方形面積的和為2,依次類推,可得全部正方形面積的和為n+1.2.(5分)如圖所示橢圓中心在坐標原點,F為左焦點,A為右頂點,B為上頂點,當⊥時,其離心率為QUOTE,此類橢圓被稱為“黃金橢圓”.類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率e等于 ()A.QUOTE B.QUOTE C.QUOTE-1 D.QUOTE+1【解析】選A.設“黃金雙曲線”方程為QUOTE-QUOTE=1(a>0,b>0),則B(0,b),F(-c,0),A(a,0).在“黃金雙曲線”中因為⊥,所以·=0.又=(c,b),=(-a,b).所以b2=ac.而b2=c2-a2,所以c2-a2=ac.在等號兩邊同除以a2,得e=QUOTE(負值舍去).3.(5分)(2024·清華附中模擬)地鐵某換乘站設有編號為A,B,C,D,E的五個平安出口.若同時開放其中的兩個平安出口,疏散1000名乘客所需的時間如下:平安出口編號A,BB,CC,DD,EA,E疏散乘客時間(s)120220160140200則疏散乘客最快的一個平安出口的編號是()A.A B.B C.D D.E【解析】選C.同時開放A、E兩個平安出口,疏散1000名乘客所需的時間為200s,同時開放D、E兩個平安出口,疏散1000名乘客所需的時間為140s,得到D疏散乘客比A快;同時開放A、E兩個平安出口,疏散1000名乘客所需的時間為200s,同時開放A、B兩個平安出口,疏散1000名乘客所需的時間為120s,得到B疏散乘客比E快;同時開放A、B兩個平安出口,疏散1000名乘客所需的時間為120s,同時開放B、C兩個平安出口,疏散1000名乘客所需的時間為220s,得到A疏散乘客比C快;同時開放B、C兩個平安出口,疏散1000名乘客所需的時間為220s,同時開放C、D兩個平安出口,疏散1000名乘客所需的時間為160s,得到D疏散乘客比B快.綜上,疏散乘客最快的一個平安出口的編號是D.4.(10分)(2024·龍巖模擬)已知函數f(x)=QUOTE,g(x)=QUOTE(其中a>0,且a≠1), 世紀金榜導學號(1)若f(1)·g(2)+f(2)·g(1)=g(k),求實數k的值.(2)能否從(1)的結論中獲得啟示,猜想出一個一般性的結論并證明你的猜想.【解析】(1)f(1)·g(2)+f(2)·g(1)=QUOTE×QUOTE+QUOTE×QUOTE=QUOTE+QUOTE=QUOTE=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 實務操作中的高級會計試題及答案
- 挖掘一級建造師試題及答案的重點
- 備考2024初級審計師必做試題及答案
- 護麻技能的提升技巧試題及答案
- 2024年高級會計考試亮點試題及答案
- 探尋2024中級審計師試題及答案
- 無人機緊急救援任務操作流程試題及答案
- 提升無人機考生的應試能力與技巧評估試題及答案
- 護理教育挑戰與應對策略試題及答案
- 中級審計師復習重點剖析試題及答案
- 2025年廣東廣州市高三二模高考英語試卷試題(含答案詳解)
- 掛靠法人免責協議書
- 碳中和技術概論全套教學課件
- 專題十二堅定文化自信建設文化強國
- 下肢深靜脈血栓形成患者的護理課件
- 儀控聯鎖調試記錄
- 青島版五四制五年級下冊數學課件 求實際距離
- 智能農業監測系統設計 畢業論文
- DB2101∕T 0010-2019 沈陽市住宅建筑綠色設計標準
- 企業公司組織架構圖word模板
- 《桃樹夏季管理》ppt課件
評論
0/150
提交評論