黑龍江省齊齊哈爾市克東縣克東一中、克山一中等五校聯考2025屆高二上數學期末經典試題含解析_第1頁
黑龍江省齊齊哈爾市克東縣克東一中、克山一中等五校聯考2025屆高二上數學期末經典試題含解析_第2頁
黑龍江省齊齊哈爾市克東縣克東一中、克山一中等五校聯考2025屆高二上數學期末經典試題含解析_第3頁
黑龍江省齊齊哈爾市克東縣克東一中、克山一中等五校聯考2025屆高二上數學期末經典試題含解析_第4頁
黑龍江省齊齊哈爾市克東縣克東一中、克山一中等五校聯考2025屆高二上數學期末經典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省齊齊哈爾市克東縣克東一中、克山一中等五校聯考2025屆高二上數學期末經典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題,,則是()A., B.,C., D.,2.已知是公差為3的等差數列.若,,成等比數列,則的前10項和()A.165 B.138C.60 D.303.已知直線與圓相交于兩點,當的面積最大時,的值是()A. B.C. D.4.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉向都由環形匝道來實現,即讓左轉車輛行駛環道后自右側切向匯入高速公路,四條環形匝道就形成了苜蓿葉的形狀.下列結論正確的個數是()①曲線C關于點(0,0)對稱;②曲線C關于直線y=x對稱;③曲線C的面積超過4π.A.0 B.1C.2 D.35.設是等差數列的前n項和,若,,則()A.26 B.-7C.-10 D.-136.已知正方形ABCD的邊長為2,E,F分別為CD,CB的中點,分別沿AE,AF將三角形ADE,ABF折起,使得點B,D恰好重合,記為點P,則AC與平面PCE所成角等于()A. B.C. D.7.如圖,直三棱柱的所有棱長均相等,P是側面內一點,設,若P到平面的距離為2d,則點P的軌跡是()A.圓的一部分 B.橢圓的一部分C.拋物線的一部分 D.雙曲線的一部分8.中秋節吃月餅是我國的傳統習俗,若一盤中共有兩種月餅,其中5塊五仁月餅、6塊棗泥月餅,現從盤中任取3塊,在取到的都是同種月餅的條件下,都是五仁月餅的概率是()A B.C. D.9.數列滿足,則數列的前n項和為()A. B.C. D.10.攢(cuán)尖是我國古代建筑中屋頂的一種結構樣式,多見于亭閣或園林式建筑.下圖是一頂圓形攢尖,其屋頂可近似看作一個圓錐,其軸截面(過圓錐軸的截面)是底邊長為,頂角為的等腰三角形,則該屋頂的面積約為()A. B.C. D.11.已知兩直線與,則與間的距離為()A. B.C. D.12.下列求導不正確的是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數在x=1處的切線與直線y=kx平行,則實數k=___________.14.雙曲線離心率__________.15.設函數f(x)在R上滿足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),則a與b的大小關系為________16.若直線與函數的圖象有三個交點,則實數a的取值范圍是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新疆長絨棉品質優良,纖維柔長,被世人譽為“棉中極品”,產于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價棉花質量的重要指標之一,在新疆某地區成熟的長絨棉中隨機抽測了一批棉花的纖維長度(單位:mm),將樣本數據制成頻率分布直方圖如下:(1)求的值;(2)估計該樣本數據的平均數(同一組中的數據用該組數據區間的中點值為代表);(3)根據棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區成熟的棉花中隨機抽測兩根棉花的纖維長度,用樣本的頻率估計概率,求至少有一根棉花纖維長度達到特等品的概率.18.(12分)已知數列是等差數列,為其前n項和,,(1)求的通項公式;(2)若,求證:為等比數列19.(12分)已知數列的前n項和為,,,其中.(1)記,求證:是等比數列;(2)設,數列的前n項和為,求證:.20.(12分)已知等差數列滿足,前7項和為(Ⅰ)求的通項公式(Ⅱ)設數列滿足,求的前項和.21.(12分)已知數列中,,().(1)求證:是等比數列,并求的通項公式;(2)數列滿足,求數列的前項和為.22.(10分)已知橢圓C:,右焦點為F(,0),且離心率為(1)求橢圓C的標準方程;(2)設M,N是橢圓C上不同的兩點,且直線MN與圓O:相切,若T為弦MN的中點,求|OT||MN|的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據特稱命題的否定為全稱命題,即可得到答案.【詳解】因為命題,,所以,.故選:D2、A【解析】由等差數列的定義與等比數列的性質求得首項,然后由等差數列的前項和公式計算【詳解】因為,,成等比數列,所以,所以,解得,所以故選:A3、C【解析】利用點到直線的距離公式和弦長公式可以求出的面積是關于的一個式子,即可求出答案.【詳解】圓心到直線的距離,弦長為..當,即時,取得最大值.故選:C.4、C【解析】根據圖像或解析式即可判斷對稱性①②;估算第一象限內圖像面積即可判斷③.【詳解】①將點(-x,-y)代入后依然為,故曲線C關于原點對稱;②將點(y,x)代入后依然為,故曲線C關于y=x對稱;③曲線C在四個象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點最遠的點的距離為顯然第一象限內曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內曲線C的面積小于,則曲線C的總面積小于4π.故③錯誤.故選:C.5、C【解析】直接利用等差數列通項和求和公式計算得到答案.【詳解】,,解得,故.故選:C.6、A【解析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標系,利用空間向量求解【詳解】由題意得,因為正方形ABCD的邊長為2,E,F分別為CD,CB的中點,所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標系,則,,,,設,則由,,,得,解得,則設平面的法向量為,則,令,則,因為,所以AC與平面PCE所成角的正弦值,因為AC與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A7、B【解析】取的中點,得出平面,作,在直角中,求得,以為原點,為軸,為軸建立平面直角坐標系,求得點的軌跡方程,即可求解.【詳解】如圖所示,取的中點,連接,得到平行于平面且過點的平面,如圖(1)(2)所示,作,則P1與E重合,則,在直角中,可得,在圖(3)中,設直三棱柱的所有棱長均為,且,以為原點,為軸,為軸建立平面直角坐標系,則,所以,即所以,整理得,所以點P的軌跡是橢圓的一部分.故選:B.8、C【解析】分別求出取到3塊月餅都是同種月餅和取到3塊月餅都是五仁月餅的種數,再根據概率公式即可得解.【詳解】解:由題意可得,取到3塊月餅都是同種月餅有種情況,取到3塊月餅都是五仁月餅有種情況,所以在取到的都是同種月餅的條件下,都是五仁月餅的概率是.故選:C.9、D【解析】利用等差數列的前n項和公式得到,進而得到,利用裂項相消法求和.【詳解】依題意得:,,,故選:D10、B【解析】由軸截面三角形,根據已知可得圓錐底面半徑和母線長,然后可解.【詳解】軸截面如圖,其中,,所以,所以,所以圓錐的側面積.故選:B11、B【解析】把直線的方程化簡,再利用平行線間距離公式直接計算得解.【詳解】直線的方程化為:,顯然,,所以與間的距離為.故選:B12、C【解析】由導數的運算法則、復合函數的求導法則計算后可判斷【詳解】A:;B:;C:;D:故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由題可求函數的導數,再利用導數的幾何意義即求.【詳解】∵,∴,,又函數在x=1處的切線與直線y=kx平行,∴.故答案為:2.14、【解析】由已知得到a,b,再利用及即可得到答案.【詳解】由已知,可得,所以,所以.故答案為:15、a>b【解析】構造函數F(x)=xf(x),利用F(x)的單調性求解即可.【詳解】設函數F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上為增函數,又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案為:a>b.16、【解析】求導函數,分析導函數的符號,得出原函數的單調性和極值,由此可求得答案.【詳解】解:因為函數,則,所以當或時,,函數單調遞減;當時,,函數單調遞增,所以當時,函數取得極小值,當時,函數取得極大值,因為直線與函數的圖象有三個交點,所以實數a的取值范圍是,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有矩形的面積之和為1,可求出答案.(2)根據平均數的公式可得到答案.(3)先求出一根棉花纖維長度達到特等品的概率,然后分恰好有一根和兩根棉花小問1詳解】由解得【小問2詳解】該樣本數據的平均數為:【小問3詳解】由題意一根棉花纖維長度達到特等品的概率為:兩根棉花中至少有一根棉花纖維長度達到特等品的概率18、(1)(2)證明見解析【解析】(1)由已知條件列出關于的方程組,解方程組求出,從而可求出的通項公式,(2)由(1)可得,然后利用等比數列的定義證明即可【小問1詳解】設數列的公差為,則由,,得,解得,所以【小問2詳解】證明:由(1)得,所以,()所以數列是以9為公比,27為首項的等比數列19、(1)證明見解析;(2)證明見解析.【解析】(1)應用的關系,結合構造法可得,根據已知條件及等比數列的定義即可證結論.(2)由(1)得,再應用錯位相減法求,即可證結論.【小問1詳解】證明:對任意的,,,時,,解得,時,因為,,兩式相減可得:,即有,∴,又,則,因為,,所以,對任意的,,所以,因此,是首項和公比均為3的等比數列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡可得:,又,∴.20、(1)(2).【解析】(1)根據等差數列的求和公式可得,得,然后由已知可得公差,進而求出通項;(2)先明確=,為等差乘等比型通項故只需用錯位相減法即可求得結論.解析:(Ⅰ)由,得因為所以(Ⅱ)21、(1)(2)【解析】由已知式子變形可得是以為首項,為公比的等比數列,由等比數列的通項公式易得利用錯位相減法,得到數列的前項和為解析:(1)由,()知,又,∴是以為首項,為公比的等比數列,∴,∴(2),,兩式相減得,∴點睛:本題主要考查數列的證明,錯位相減法等基礎知識,考查學生的分析問題解決問題的能力,轉化能力和計算能力.第一問中將已知的遞推公式進行變形,轉化為的形式來證明,還可以根據等比數列的定義來證明;第二問,將第一問中得到的結論代入,先得到的表達式,利用錯位相減法,即可得到數列的前項和為22、(1);(2)[,3].【解析】(1)由題可得,即求;(2)當直線的斜率不存在或為0,易求,當直線MN斜率存在且不為0時,設直線MN的方程為:,利用直線與圓相切可得,再聯立橢圓方程并應用韋達定理求得,然后利用基本不等式即得.【小問1詳解】由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論