2025屆天津市天津一中高二上數學期末學業水平測試模擬試題含解析_第1頁
2025屆天津市天津一中高二上數學期末學業水平測試模擬試題含解析_第2頁
2025屆天津市天津一中高二上數學期末學業水平測試模擬試題含解析_第3頁
2025屆天津市天津一中高二上數學期末學業水平測試模擬試題含解析_第4頁
2025屆天津市天津一中高二上數學期末學業水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆天津市天津一中高二上數學期末學業水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.和的等差中項與等比中項分別為()A., B.2,C., D.1,2.雙曲線的左、右焦點分別為、,P為雙曲線C的右支上一點.以O為圓心a為半徑的圓與相切于點M,且,則該雙曲線的漸近線為()A. B.C. D.3.若是函數的一個極值點,則的極大值為()A. B.C. D.4.在等差數列中,,,則使數列的前n項和成立的最大正整數n=()A.2021 B.2022C.4041 D.40425.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點,且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π6.若拋物線x=﹣my2的焦點到準線的距離為2,則m=()A.﹣4 B.C. D.±7.已知雙曲線的虛軸長是實軸長的2倍,則實數的值是A. B.C. D.8.已知拋物線的焦點為F,點A在拋物線上,直線FA與拋物線的準線交于點M,O為坐標原點.若,且,則()A.1 B.2C.3 D.49.均勻壓縮是物理學一種常見現象.在平面直角坐標系中曲線均勻壓縮,可用曲線上點的坐標來描述.設曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.10.圓上到直線的距離為的點共有A.個 B.個C.個 D.個11.已知,若,則()A. B.2C. D.e12.瑞士數學家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點,其歐拉線方程為,則頂點C的坐標是()A.() B.()C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線:的焦點,為拋物線上在第一象限的點.若為的中點,為拋物線的頂點,則直線斜率的最大值為______.14.橢圓的左、右焦點分別為,,過焦點的直線交該橢圓于兩點,若的內切圓面積為,兩點的坐標分別為,,則的面積________,的值為________.15.在平行六面體中,點P是AC與BD的交點,若,且,則___________.16.在平面直角坐標系xOy中,AB是圓O:x2+y2=1的直徑,且點A在第一象限;圓O1:(x﹣a)2+y2=r2(a>0)與圓O外離,線段AO1與圓O1交于點M,線段BM與圓O交于點N,且,則a的取值范圍為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若與在處有相同的切線,求實數的取值;(2)若時,方程在上有兩個不同的根,求實數的取值范圍.18.(12分)公差不為0的等差數列中,,且成等比數列(1)求數列的通項公式;(2)設,數列的前n項和為.若,求的取值范圍19.(12分)如圖,四棱錐中,,,,平面,點F在線段上運動.(1)若平面,請確定點F的位置并說明理由;(2)若點F滿足,求平面與平面的夾角的余弦值.20.(12分)等差數列的公差d不為0,滿足成等比數列,數列滿足.(1)求數列與通項公式:(2)若,求數列的前n項和.21.(12分)某市對排污水進行綜合治理,征收污水處理費,系統對各廠一個月內排出的污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數關系式;(2)求排放污水150噸的污水處理費用.22.(10分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數和中位數

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據等差中項和等比中項的概念分別求值即可.【詳解】和的等差中項為,和的等比中項為.故選:C.2、A【解析】連接、,利用中位線定理和雙曲線定義構建參數關系,即求得漸近線方程.【詳解】如圖,連接、,∵M是的中點,∴是的中位線,∴,且,根據雙曲線的定義,得,∴,∵與以原點為圓心a為半徑的圓相切,∴,可得,中,,即得,,解得,即,得.由此得雙曲線的漸近線方程為.故選:A.【點睛】本題考查了雙曲線的定義的應用和漸近線的求法,屬于中檔題.3、D【解析】先對函數求導,由已知,先求出,再令,并判斷函數在其左右兩邊的單調性,從而確定極大值點,然后帶入原函數即可完成求解.【詳解】因為,,所以,所以,,令,解得或,所以當,,單調遞增;時,,單調遞減;當,,單調遞增,所以的極大值為故選:D4、C【解析】根據等差數列的性質易得,,再應用等差數列前n項和公式及等差中項、下標和的性質可得、,即可確定答案.【詳解】因為是等差數列且,,所以,,.故選:C.5、C【解析】取中點,連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計算可得【詳解】取中點,連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點,則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C6、D【解析】把拋物線的方程化為標準方程,由焦點到準線的距離為,即可得到結果,得到答案.【詳解】由題意,拋物線,可得,又由拋物線的焦點到準線的距離為2,即,解得.故選D.【點睛】本題主要考查了拋物線的標準方程,以及簡單的幾何性質的應用,其中解答中熟記拋物線的焦點到準線的距離為是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.7、C【解析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標準方程與簡單幾何性質.8、D【解析】設,由和在拋物線上,求出和,利用求出p.【詳解】過A作AP垂直x軸與P.拋物線的焦點為,準線方程為.設,因為,所以,解得:.因為在拋物線上,則.所以,即,解得:.故選:D9、C【解析】設單位圓上一點為,經過題設變換后坐標為,則,代入圓的方程即可得曲線方程.【詳解】由題設,單位圓上一點坐標為,經過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應坐標為,∴,則,故中,可得:.故選:C.10、C【解析】求出圓的圓心和半徑,比較圓心到直線的距離和圓的半徑的關系即可得解.【詳解】圓可變為,圓心為,半徑為,圓心到直線的距離,圓上到直線的距離為的點共有個.故選:C.【點睛】本題考查了圓與直線的位置關系,考查了學生合理轉化的能力,屬于基礎題.11、B【解析】求得導函數,則,計算即可得出結果.【詳解】,.,解得:.故選:B12、A【解析】根據題意,求得的外心,再根據外心的性質,以及重心的坐標,聯立方程組,即可求得結果.【詳解】因為,故的斜率,又的中點坐標為,故的垂直平分線的方程為,即,故△的外心坐標即為與的交點,即,不妨設點,則,即;又△的重心的坐標為,其滿足,即,也即,將其代入,可得,,解得或,對應或,即或,因為與點重合,故舍去.故點的坐標為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由題意,可得,設,,,根據是線段的中點,求出的坐標,可得直線的斜率,利用基本不等式即可得結論【詳解】解:由題意,可得,設,,,,是線段的中點,則,,,當且僅當時取等號,直線的斜率的最大值為1故答案為:114、①.6②.3【解析】由題意得,由內切圓面積為可得其半徑,根據焦點三角形面積公式可得第一空答案,結合面積公式和等面積法建立等式化簡即可.【詳解】解:由得由內切圓面積為可得其半徑,設其內切圓圓心為則又所以.故答案為:6;3【點睛】橢圓中常用面積公式:(1)(表示邊上的高);(2);(3)(為三角形內切圓半徑);(4).15、【解析】由向量的運算法則,求得,根據,結合向量的數量積的運算,即可求解.【詳解】由題意可得,,則,故.故答案為:16、【解析】根據判斷出四邊形為平行四邊形,由此求得圓的方程以及的長,進而判斷出點在圓上,根據圓與圓的位置關系,求得的取值范圍.【詳解】四邊形ONO1M為平行四邊形,即ON=MO1=r=1,所以圓的方程為,且ON為△ABM的中位線AM=2ON=2AO1=3,故點A在以O1為圓心,3為半徑的圓上,該圓的方程為:,故與x2+y2=1在第一象限有交點,即2<a<4,由,解得,故a的取值范圍為(,4).故答案為:【點睛】本小題主要考查圓與圓的位置關系,考查化歸與轉化的數學思想方法,考查數形結合的數學思想方法,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據導數的幾何意義求得函數在處的切線方程,再由有相同的切線這一條件即可求解;(2)先分離,再研究函數的單調性,最后運用數形結合的思想求解即可.【小問1詳解】設公切線與的圖像切于點,f'(x)=1+lnx?f由題意得:;【小問2詳解】當時,,①,①式可化為為,令令,,在上單調遞增,在上單調遞減.,當時,由題意知:18、(1)(2)【解析】(1)利用等比數列的定義以及等差數列的性質,列出方程即可得到答案;(2)先求出的通項,再利用的單調性即可得到的最小值,從而求得的取值范圍【小問1詳解】依題意,,,所以,設等差數列的公差為,則,解得,所以【小問2詳解】,則數列是遞增數列,,所以,若,則.19、(1)F為BD的中點,證明見解析;(2).【解析】(1)由為的中點,取的中點,連接易證四邊形為平行四邊形,得到,再利用線面平行的判定定理證明;(2)根據題意可得平面ABC與平面AFC的夾角為二面角,取的中點H為坐標原點,建立空間直角坐標系,分別求得平面的一個法向量,平面的一個法向量,設二面角為,由求解.【小問1詳解】為的中點.如圖:取的中點,連接∵,分別為,的中點,∴且∵且∴平行且等于∴四邊形為平行四邊形,則∵平面ABC,平面ABC∴平面ABC【小問2詳解】由題意知,平面ABC與平面AFC的夾角為二面角,取的中點H為坐標原點,建立如圖所示的空間直角坐標系.因為三角形為等腰三角形,易求,則,,所以,,設平面的一個法向量為,則,即,解得設平面的一個法向量為,則,即,解得設二面角為,則,因為二面角為銳角,所以余弦值為.20、(1),(2)【解析】(1)根據等比中項的性質及等差數列的通項公式得到方程求出公差,即可求出的通項公式,由,當時,求出,當時,兩式作差,即可求出;(2)由(1)可得,利用錯位相減法求和即可;【小問1詳解】解:由已知,又,所以故解得(舍去)或∴∵①故當時,可知,∴,當時,可知②①②得∴又也滿足,故當時,都有;【小問2詳解】解:由(1)知,故③,∴④,由③④得整理得.21、(1);(2)1400(元).【解析】(1)根據已知條件即可容易求得函數關系式;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論