貴州安順市平壩區集圣中學2025屆數學高二上期末調研模擬試題含解析_第1頁
貴州安順市平壩區集圣中學2025屆數學高二上期末調研模擬試題含解析_第2頁
貴州安順市平壩區集圣中學2025屆數學高二上期末調研模擬試題含解析_第3頁
貴州安順市平壩區集圣中學2025屆數學高二上期末調研模擬試題含解析_第4頁
貴州安順市平壩區集圣中學2025屆數學高二上期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州安順市平壩區集圣中學2025屆數學高二上期末調研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面上有一系列點,對每個正整數,點位于函數的圖象上,以點為圓心的與軸都相切,且與彼此外切.若,且,,的前項之和為,則()A. B.C. D.2.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假3.已知且,則的值為()A.3 B.4C.5 D.64.直線與圓的位置關系是()A.相切 B.相交C.相離 D.不確定5.過點且平行于直線的直線的方程為()A. B.C. D.6.已知斜率為1的直線與橢圓相交于A、B兩點,O為坐標原點,AB的中點為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.7.若點在橢圓的外部,則的取值范圍為()A. B.C. D.8.在等腰中,在線段斜邊上任取一點,則線段的長度大于的長度的概率()A. B.C. D.9.向量,向量,若,則實數()A. B.1C. D.10.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內的一動點,若,則動點的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上11.若等比數列中,,,那么()A.20 B.18C.16 D.1412.命題“若,則”為真命題,那么不可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在公差不為的等差數列中,,,成等比數列,數列的前項和為(1)求數列的通項公式;(2)若,且數列的前項和為,求14.若正實數滿足,則的最大值是________15.桌面排列著100個乒乓球,兩個人輪流拿球裝入口袋,能拿到第100個乒乓球人為勝利者.條件是:每次拿走球的個數至少要拿1個,但最多又不能超過5個,這個游戲中,先手是有必勝策略的,請問:如果你是最先拿球的人,為了保證最后贏得這個游戲,你第一次該拿走___個球16.如果方程表示焦點在軸上的橢圓,那么實數的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)雙曲線的離心率為2,經過C的焦點垂直于x軸的直線被C所截得的弦長為12.(1)求C的方程;(2)設A,B是C上兩點,線段AB的中點為,求直線AB的方程.18.(12分)一個經銷鮮花產品的微店,為保障售出的百合花品質,每天從云南鮮花基地空運固定數量的百合花,如有剩余則免費分贈給第二天購花顧客,如果不足,則從本地鮮花供應商處進貨.今年四月前10天,微店百合花的售價為每支2元,云南空運來的百合花每支進價1.6元,本地供應商處百合花每支進價1.8元,微店這10天的訂單中百合花的需求量(單位:支)依次為:251,255,231,243,263,241,265,255,244,252.(Ⅰ)求今年四月前10天訂單中百合花需求量的平均數和眾數,并完成頻率分布直方圖;(Ⅱ)預計四月的后20天,訂單中百合花需求量的頻率分布與四月前10天相同,百合花進貨價格與售價均不變,請根據(Ⅰ)中頻率分布直方圖判斷(同一組中的需求量數據用該組區間的中點值作代表,位于各區間的頻率代替位于該區間的概率),微店每天從云南固定空運250支,還是255支百合花,四月后20天百合花銷售總利潤會更大?19.(12分)如圖,在四棱錐中,底面,,,,,為上一點,且.請用空間向量知識解答下列問題:(1)求證:平面;(2)求平面與平面夾角的大小.20.(12分)已知為坐標原點,橢圓:的左、右焦點分別為,,右頂點為,上頂點為,若,,成等比數列,橢圓上的點到焦點的距離的最大值為求橢圓的標準方程;過該橢圓的右焦點作兩條互相垂直的弦與,求的取值范圍21.(12分)某學校為了調查本校學生在一周內零食方面的支出情況,抽出了一個容量為的樣本,分成四組,,,,其頻率分布直方圖如圖所示,其中支出金額在元的學生有180人.(1)請求出的值;(2)如果采用分層抽樣的方法從,內共抽取5人,然后從中選取2人參加學校的座談會,求在,內正好各抽取一人的概率為多少.22.(10分)在直角坐標系中,直線的參數方程為(為參數).以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.(1)求直線的普通方程,曲線C的直角坐標方程;(2)設直線與曲線C相交于A,B兩點,點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據兩圓的幾何關系及其圓心在函數的圖象上,即可得到遞推關系式,通過構造等差數列求得的通項公式,得出,最后利用裂項相消,求出數列前項和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數列且,,則,,則,即,故答案選:.2、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因為成立,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.3、C【解析】由空間向量數量積的坐標運算求解【詳解】由已知,解得故選:C4、B【解析】直線恒過定點,而此點在圓的內部,故可得直線與圓的位置關系.【詳解】直線恒過定點,而,故點在圓的內部,故直線與圓的位置關系為相交,故選:B.5、B【解析】根據平行設直線方程,代入點計算得到答案.【詳解】設直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.6、B【解析】這是中點弦問題,注意斜率與橢圓a,b之間的關系.【詳解】如圖:依題意,假設斜率為1的直線方程為:,聯立方程:,解得:,代入得,故P點坐標為,由題意,OP的斜率為,即,化簡得:,,,;故選:B.7、B【解析】根據題中條件,得到,求解,即可得出結果.【詳解】因為點在橢圓的外部,所以,即,解得或.故選:B.8、C【解析】利用幾何概型的長度比值,即可計算.【詳解】設直角邊長,斜邊,則線段的長度大于的長度的概率.故選:C9、C【解析】由空間向量垂直的坐標表示列方程即可求解.【詳解】因為向量,向量,若,則,解得:,故選:C.10、A【解析】根據題意,得到兩兩垂直,以點為坐標原點,分別以為軸,建立空間直角坐標系,設,由題意,得到,,再由得到,求出點的軌跡,即可得出結果.【詳解】由題意,兩兩垂直,以點為坐標原點,分別以為軸,建立如圖所示的空間直角坐標系,因為底面是邊長為的正方形,則,,因為為底面內的一動點,所以可設,因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點的軌跡在圓上.故選:A.【點睛】本題主要考查立體幾何中的軌跡問題,靈活運用空間向量的方法求解即可,屬于常考題型.11、B【解析】利用等比數列的基本量進行計算即可【詳解】設等比數列的公比為,則,所以故選:B12、D【解析】根據命題真假的判斷,對四個選項一一驗證即可.【詳解】對于A:若,則必成立;對于B:若,則必成立;對于C:若,則必成立;對于D:由不能得出,所以不可能是.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、(1)(2)【解析】(1)由解出,再由前項和為55求得,由等差數列通項公式即可求解;(2)先求出,再由裂項相消求和即可.【小問1詳解】設公差為,由,,成等比數列,可得,即有,整理得,數列的前項和為55,可得,解得1,1,則;【小問2詳解】,則14、4【解析】由基本不等式及正實數、滿足,可得的最大值.【詳解】由基本不等式,可得正實數、滿足,,可得,當且僅當時等號成立,故的最大值為,故答案為:4.15、4【解析】根據題意,由游戲規則,結合余數的性質,分析可得答案【詳解】解:根據題意,第一次該拿走4個球,以后的取球過程中,對方取個,自己取個,由于,則自己一定可以取到第100個球.故答案為:416、【解析】化簡橢圓的方程為標準形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數的取值范圍是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據已知條件求得,由此求得的方程.(2)結合點差法求得直線的斜率,從而求得直線的方程.【小問1詳解】因為C的離心率為2,所以,可得.將代入可得,由題設.解得,,,所以C的方程為.【小問2詳解】設,,則,.因此,即.因為線段AB的中點為,所以,,從而,于是直線AB的方程是.18、(Ⅰ)見解析(Ⅱ)四月后20天總利潤更大【解析】(Ⅰ)根據眾數的定義直接可求出眾為255.利用平均數的公式可以求出平均數.根據給定的分組,通過計算完成頻率分布直方圖(Ⅱ)設訂單中百合花需求量為(支),由(Ⅰ)中頻率分布直方圖,可以求出可能取值、每個可能取值相應頻率,每個可能取值相應的天數.分別求出空運250支,255支百合花時,銷售總利潤的大小,進行比較,得出結論【詳解】解:(Ⅰ)四月前10天訂單中百合需求量眾數為255,平均數頻率分布直方圖補充如下:(Ⅱ)設訂單中百合花需求量為(支),由(Ⅰ)中頻率分布直方圖,可能取值為235,245,255,265,相應頻率分別為0.1,0.3,0.4,0.2,∴20天中相應的天數為2天,6天,8天,4天.①若空運250支,當日利潤為,,當日利潤為,,當日利潤為,,當日利潤為,20天總利潤為元.②若空運255支,當日利潤為,,當日利潤為,,當日利潤為,,當日利潤為,20天總利潤為元.∵,∴每天空運250支百合花四月后20天總利潤更大.【點睛】本題考查了眾數、平均數、頻率分布直方圖;重點考查了學生通過閱讀,提取有用信息,用數學知識解決實際生活問題的能力19、(1)證明見解析(2)【解析】(1)以為原點,、、分別為軸、軸、軸建立空間直角坐標系,證明出,,結合線面垂直的判定定理可證得結論成立;(2)利用空間向量法可求得平面與平面夾角的大小.【小問1詳解】證明:底面,,故以為原點,、、分別為軸、軸、軸建立如圖所示的空間直角坐標系,則、、、、、,所以,,,,則,,即,,又,所以,平面.【小問2詳解】解:知,,,設平面的法向量為,則,,即,令,可得,設平面的法向量為,由,,即,令,可得,,因此,平面與平面夾角的大小為.20、(1)(2)【解析】根據,,成等比數列,橢圓上的點到焦點的距離的最大值為.列出關于、、的方程組,求出、的值,即可得出橢圓的方程;對直線和分兩種情況討論:一種是兩條直線與坐標軸垂直,可求出兩條弦長度之和;二是當兩條直線斜率都存在時,設直線的方程為,將直線方程與橢圓方程聯立,列出韋達定理,利用弦長公式可計算出的長度的表達式,然后利用相應的代換可求出的長度表達式,將兩線段長度表達式相加,利用函數思想可求出兩條弦長的取值范圍最后將兩種情況的取值范圍進行合并即可得出答案【詳解】易知,得,則,而,又,得,,因此,橢圓C的標準方程為;當兩條直線中有一條斜率為0時,另一條直線的斜率不存在,由題意易得;當兩條直線斜率都存在且不為0時,由知,設、,直線MN的方程為,則直線PQ的方程為,將直線方程代入橢圓方程并整理得:,顯然,,,,同理得,所以,,令,則,,設,,所以,,所以,,則綜合可知,的取值范圍是【點睛】本題主要考查待定系數法求橢圓方程及圓錐曲線求范圍,屬于難題.解決圓錐曲線中的范圍問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結論來解決,非常巧妙;二是將圓錐曲線中范圍問題轉化為函數問題,然后根據函數的特征選用參數法、配方法、判別式法、三角函數有界法、函數單調性法以及均值不等式法求解.21、(1);(2).【解析】(1)根據頻率分布直方圖求出[50,60]的頻率,180除以該頻率即為n的值;(2)將的樣本編號為a、b,將的樣本編號為A、B、C,利用列舉法即可求概率.【小問1詳解】由于支出金額在的頻率為,∴.【小問2詳解】采用分層抽樣抽取的的人數比應為2:3,∴5人中有2人零食支出位于,記為、;有3人零食支出在,記為A、B、C.從這5人中選取2人有,,,,,,,,,,共10種情況;其中內正好各抽取一人有,,,,,,共6種情況.∴在內正好各抽

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論