




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第第頁第05講4.5.1函數(shù)的零點(diǎn)與方程的解課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①了解函數(shù)的零點(diǎn)與方程的解的關(guān)系,并能結(jié)合函數(shù)的圖象判定函數(shù)的零點(diǎn)。②能根據(jù)函數(shù)零點(diǎn)存在性定理對函數(shù)零點(diǎn)存在進(jìn)行判定,同時能處理與函數(shù)零點(diǎn)問題相結(jié)合的求參數(shù)及綜合類的問題。通過本節(jié)課的學(xué)習(xí),要求能判定函數(shù)零點(diǎn)的存在,同時能解決與函數(shù)零點(diǎn)相結(jié)合的綜合問題知識點(diǎn)01:函數(shù)零點(diǎn)的概念1、函數(shù)零點(diǎn)的概念對于一般函數(shù)SKIPIF1<0,我們把使SKIPIF1<0的實(shí)數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的零點(diǎn).幾何定義:函數(shù)SKIPIF1<0的零點(diǎn)就是方程SKIPIF1<0的實(shí)數(shù)解,也就是函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸的公共點(diǎn)的橫坐標(biāo).
這樣:方程SKIPIF1<0有實(shí)數(shù)解SKIPIF1<0函數(shù)SKIPIF1<0有零點(diǎn)SKIPIF1<0函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸有公共點(diǎn)2、已學(xué)基本初等函數(shù)的零點(diǎn)①一次函數(shù)SKIPIF1<0只有一個零點(diǎn)SKIPIF1<0;②反比例函數(shù)SKIPIF1<0沒有零點(diǎn);③指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)沒有零點(diǎn);④對數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)只有一個零點(diǎn)1;⑤冪函數(shù)SKIPIF1<0當(dāng)SKIPIF1<0時,有一個零點(diǎn)0;當(dāng)SKIPIF1<0時,無零點(diǎn)。知識點(diǎn)02:函數(shù)零點(diǎn)存在定理及其應(yīng)用1、函數(shù)零點(diǎn)存在定理如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象是一條連續(xù)不斷的曲線,且有SKIPIF1<0,那么函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)至少有一個零點(diǎn),即存在SKIPIF1<0,使得SKIPIF1<0,這個SKIPIF1<0也就是方程SKIPIF1<0的解.說明:定理要求具備兩個條件:①函數(shù)在區(qū)間SKIPIF1<0上的圖象是連續(xù)不斷的;②SKIPIF1<0.兩個條件缺一不可.2、函數(shù)零點(diǎn)的求法①代數(shù)法:根據(jù)零點(diǎn)定義,求出方程SKIPIF1<0的實(shí)數(shù)解;②數(shù)形結(jié)合法:作出函數(shù)圖象,利用函數(shù)性質(zhì)求解【即學(xué)即練1】(2023春·四川廣安·高一??茧A段練習(xí))函數(shù)SKIPIF1<0的零點(diǎn)為.【答案】2【詳解】令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0.故答案為:SKIPIF1<03、函數(shù)零點(diǎn)個數(shù)的判斷①利用代數(shù)法,求出所有零點(diǎn);②數(shù)形結(jié)合,通過作圖,找出圖象與SKIPIF1<0軸交點(diǎn)的個數(shù);③數(shù)形結(jié)合,通過分離,將原函數(shù)拆分成兩個函數(shù),找到兩個函數(shù)圖象交點(diǎn)的個數(shù);④函數(shù)零點(diǎn)唯一:函數(shù)存在零點(diǎn)+函數(shù)單調(diào).知識點(diǎn)03:二次函數(shù)的零點(diǎn)問題一元二次方程SKIPIF1<0的實(shí)數(shù)根也稱為函數(shù)SKIPIF1<0的零點(diǎn).當(dāng)SKIPIF1<0時,一元二次方程SKIPIF1<0的實(shí)數(shù)根、二次函數(shù)SKIPIF1<0的零點(diǎn)之間的關(guān)系如下表所示:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的實(shí)數(shù)根SKIPIF1<0(其中SKIPIF1<0)SKIPIF1<0方程無實(shí)數(shù)根SKIPIF1<0的圖象SKIPIF1<0的零點(diǎn)SKIPIF1<0SKIPIF1<0函數(shù)無零點(diǎn)【即學(xué)即練2】(2023·高一課時練習(xí))若函數(shù)SKIPIF1<0的一個零點(diǎn)是1,則它的另一個零點(diǎn)是.【答案】3【詳解】由SKIPIF1<0,所以令SKIPIF1<0或SKIPIF1<0,故另一個零點(diǎn)為3故答案為:3題型01求函數(shù)的零點(diǎn)【典例1】函數(shù)SKIPIF1<0的零點(diǎn)為.【答案】4【詳解】依題意有SKIPIF1<0,所以SKIPIF1<0.故答案為:4.【典例2】已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)為.【答案】SKIPIF1<0和SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0內(nèi)有且僅有一個零點(diǎn)2;綜上所述:函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0和SKIPIF1<0.故答案為:SKIPIF1<0和SKIPIF1<0.【變式1】函數(shù)SKIPIF1<0的零點(diǎn)是【答案】SKIPIF1<0/SKIPIF1<0【詳解】令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0.【變式2】求下列函數(shù)的零點(diǎn).(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)9(2)答案見解析【詳解】(1)由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0.(2)由SKIPIF1<0,得SKIPIF1<0,①當(dāng)SKIPIF1<0,SKIPIF1<0時,函數(shù)有唯一零點(diǎn)SKIPIF1<0;②當(dāng)SKIPIF1<0,即SKIPIF1<0時,函數(shù)有兩個零點(diǎn)SKIPIF1<0和SKIPIF1<0.題型02函數(shù)零點(diǎn)個數(shù)的判斷【典例1】函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)為()A.1B.2C.1或2D.0【答案】C【詳解】由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)的零點(diǎn)個數(shù)為SKIPIF1<0;當(dāng)SKIPIF1<0時,函數(shù)的零點(diǎn)個數(shù)為SKIPIF1<0.所以該函數(shù)的零點(diǎn)個數(shù)是1或2.故選:C【典例2】方程SKIPIF1<0的實(shí)數(shù)解的個數(shù)是(
)A.0B.1C.2D.3【答案】B【詳解】在同一直角坐標(biāo)系中畫出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,由圖象可知:兩個函數(shù)圖象只有一個交點(diǎn),故方程SKIPIF1<0的實(shí)數(shù)解的個數(shù)為1,故選:B
【典例3】已知SKIPIF1<0,方程SKIPIF1<0的實(shí)根個數(shù)為.【答案】2【詳解】由SKIPIF1<0,則SKIPIF1<0,則令SKIPIF1<0,SKIPIF1<0,分別作出它們的圖象如下圖所示,
由圖可知,有兩個交點(diǎn),所以方程SKIPIF1<0的實(shí)根個數(shù)為2.故答案為:2.【典例4】若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)是.【答案】2【詳解】作出SKIPIF1<0與SKIPIF1<0的函數(shù)圖像如圖:
由圖像可知兩函數(shù)圖像有SKIPIF1<0個交點(diǎn),所以函數(shù)SKIPIF1<0有兩個零點(diǎn).故答案為:SKIPIF1<0【變式1】函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù)是(
)A.0B.1C.2D.無數(shù)個【答案】C【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的零點(diǎn)為1和SKIPIF1<0,故有兩個零點(diǎn),故選:C【變式2】已知函數(shù)SKIPIF1<0.(1)作出函數(shù)SKIPIF1<0的圖象;(2)就a的取值范圍討論函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù).【答案】(1)作圖見解析(2)答案見解析【詳解】(1)先作出SKIPIF1<0的圖象,然后將其在x軸下方的部分翻折到x軸上方,原x軸上及其上方的圖象及翻折上來的圖象便是所要作的圖象.
.
(2)由圖象易知,函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù)就是函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0的交點(diǎn)的個數(shù).SKIPIF1<0.當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù)為0;當(dāng)SKIPIF1<0與SKIPIF1<0時,函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù)為2;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù)為4;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的零點(diǎn)的個數(shù)為3.【變式3】若SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0至多有個零點(diǎn).【答案】4【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0或SKIPIF1<0.綜上所述,SKIPIF1<0的零點(diǎn)可能是SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.所以,SKIPIF1<0的零點(diǎn)至多有4個.故答案為:4.【變式4】函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象的交點(diǎn)個數(shù)為個.【答案】2【詳解】在同一坐標(biāo)系中作出兩個函數(shù)的圖象,如圖,它們交點(diǎn)個數(shù)為2.
故答案為:2.題型03判斷函數(shù)零點(diǎn)所在的區(qū)間【典例1】若SKIPIF1<0是方程SKIPIF1<0的解,則SKIPIF1<0(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【詳解】因?yàn)楹瘮?shù)SKIPIF1<0在定義上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點(diǎn)所在區(qū)間是SKIPIF1<0,即SKIPIF1<0.故選:C.【典例2】設(shè)SKIPIF1<0為方程SKIPIF1<0的解,若SKIPIF1<0,則SKIPIF1<0的值為.【答案】SKIPIF1<0【詳解】由題意可知SKIPIF1<0是方程SKIPIF1<0的解,所以SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,再根據(jù)SKIPIF1<0,可得SKIPIF1<0,故答案為:SKIPIF1<0.【變式1】函數(shù)SKIPIF1<0的零點(diǎn)所在區(qū)間是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【詳解】易知函數(shù)定義域?yàn)镾KIPIF1<0,且函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0上沒有零點(diǎn);SKIPIF1<0,SKIPIF1<0,由零點(diǎn)存在定理可知SKIPIF1<0,所以零點(diǎn)所在區(qū)間是SKIPIF1<0.故選:D【變式2】函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則k的值為(
)A.1B.2C.0D.3【答案】A【詳解】解:因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0,故選:A題型04已知零點(diǎn)個數(shù)求參數(shù)的取值范圍【典例1】若方程SKIPIF1<0有兩個不同的實(shí)數(shù)根,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【詳解】令SKIPIF1<0,由于當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如圖所示,則當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個交點(diǎn),即方程SKIPIF1<0有兩個不同的實(shí)數(shù)根,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.【典例2】設(shè)SKIPIF1<0表示m,n中的較小數(shù).若函數(shù)SKIPIF1<0至少有3個零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【詳解】由題意可得SKIPIF1<0有解,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,必有SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,必有SKIPIF1<0,不等式組無解,綜上所述,SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A【典例3】若函數(shù)SKIPIF1<0有2個零點(diǎn),求實(shí)數(shù)a的取值范圍.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,畫出SKIPIF1<0的大致圖象如下:由圖象可知:當(dāng)SKIPIF1<0或SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0的圖象有兩個交點(diǎn),符合題意,故a的取值范圍為SKIPIF1<0,
【典例4】已知函數(shù)SKIPIF1<0是偶函數(shù).當(dāng)SKIPIF1<0時,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0在SKIPIF1<0上的解析式;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),求實(shí)數(shù)a的取值范圍;(3)已知SKIPIF1<0,試討論SKIPIF1<0的零點(diǎn)個數(shù),并求對應(yīng)的m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0(3)答案見解析【詳解】(1)設(shè)SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0為偶函數(shù)∴SKIPIF1<0綜上,有SKIPIF1<0(2)由(1)作出SKIPIF1<0的圖像如圖:因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上具有單調(diào)性,由圖可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0或SKIPIF1<0.(3)由(1)作出SKIPIF1<0的圖像如圖:由圖像可知:當(dāng)SKIPIF1<0時,SKIPIF1<0有兩個零點(diǎn);當(dāng)SKIPIF1<0時,SKIPIF1<0有四個零點(diǎn);當(dāng)SKIPIF1<0時,SKIPIF1<0有六個零點(diǎn);當(dāng)SKIPIF1<0時,SKIPIF1<0有三個零點(diǎn);當(dāng)SKIPIF1<0時,SKIPIF1<0沒有零點(diǎn).【變式1】設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0若SKIPIF1<0恰有一個零點(diǎn),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【詳解】畫出函數(shù)SKIPIF1<0的圖象如下圖所示:函數(shù)SKIPIF1<0可由SKIPIF1<0分段平移得到,易知當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0恰有一個零點(diǎn),滿足題意;當(dāng)SKIPIF1<0時,代表圖象往上平移,顯然沒有零點(diǎn),不符合題意;當(dāng)SKIPIF1<0時,圖象往下平移,當(dāng)SKIPIF1<0時,函數(shù)有兩個零點(diǎn);當(dāng)SKIPIF1<0時,SKIPIF1<0恰有一個零點(diǎn),滿足題意,即SKIPIF1<0;綜上可得SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D【變式2】(多選)已知函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0恰有兩個互異的實(shí)數(shù)解,則實(shí)數(shù)a的值可以是(
)A.0B.1C.SKIPIF1<0D.2【答案】BCD【詳解】函數(shù)SKIPIF1<0的圖象,如圖所示:由題意知,直線SKIPIF1<0與SKIPIF1<0的圖象有2個交點(diǎn).當(dāng)直線SKIPIF1<0過點(diǎn)SKIPIF1<0時,SKIPIF1<0,當(dāng)直線SKIPIF1<0過點(diǎn)SKIPIF1<0時,SKIPIF1<0.結(jié)合圖象如圖可知,當(dāng)SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0的圖象有2個交點(diǎn),如圖所示:又當(dāng)直線SKIPIF1<0與曲線SKIPIF1<0相切在第一象限時,直線SKIPIF1<0與SKIPIF1<0的圖象也有2個交點(diǎn),如圖所示:SKIPIF1<0,化簡可得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,又由圖可知SKIPIF1<0,所以SKIPIF1<0,此時切點(diǎn)的橫坐標(biāo)為2符合.綜上,實(shí)數(shù)a的取值范圍是SKIPIF1<0.故選:BCD.【變式3】若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有且只有一個零點(diǎn),則SKIPIF1<0的取值集合是.【答案】SKIPIF1<0【詳解】
由已知得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由二次函數(shù)圖象及函數(shù)零點(diǎn)存在定理可知,該函數(shù)在SKIPIF1<0內(nèi)只有一個零點(diǎn),只需SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【變式4】已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù).(1)求SKIPIF1<0的值;(2)畫出SKIPIF1<0的圖象,并指出其單調(diào)減區(qū)間;(3)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有2個不相等的實(shí)數(shù)根,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)作圖見解析;答案見解析(3)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0;(2)由(1)得SKIPIF1<0,列表:SKIPIF1<0…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<001234…SKIPIF1<0…521252125…描點(diǎn)連線得圖象如圖所示:由圖象可得單調(diào)減區(qū)間為SKIPIF1<0和SKIPIF1<0;(3)因?yàn)殛P(guān)于SKIPIF1<0的方程SKIPIF1<0有2個不相等的實(shí)數(shù)根,所以SKIPIF1<0與SKIPIF1<0的圖象有兩個不同的交點(diǎn),由(2)中的圖可知SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.題型05已知零點(diǎn)所在區(qū)間求參數(shù)的取值范圍【典例1】函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【詳解】由零點(diǎn)存在定理可知,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點(diǎn),顯然函數(shù)為增函數(shù),只需滿足SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D【典例2】(多選)函數(shù)SKIPIF1<0的一個零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),則實(shí)數(shù)a的可能取值是(
)A.0B.1C.2D.3【答案】BC【詳解】因?yàn)楹瘮?shù)SKIPIF1<0在定義域SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由函數(shù)SKIPIF1<0的一個零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),得SKIPIF1<0,解得SKIPIF1<0,故選:BC【典例3】設(shè)SKIPIF1<0為實(shí)數(shù),函數(shù)SKIPIF1<0在SKIPIF1<0上有零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0在SKIPIF1<0單調(diào)遞增,且有零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0【變式1】若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有一個零點(diǎn),則a的取值范圍(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0只有一個零點(diǎn)SKIPIF1<0,不符合題意,當(dāng)SKIPIF1<0時,若SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0只有一個零點(diǎn)SKIPIF1<0,不符合題意,因函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有一個零點(diǎn),則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以a的取值范圍是SKIPIF1<0.故選:A【變式2】)若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】方程SKIPIF1<0在SKIPIF1<0上有解,等價于函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0有交點(diǎn),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0【變式3】若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】由題意得:SKIPIF1<0為連續(xù)函數(shù),且在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以只需SKIPIF1<0或SKIPIF1<0,解得:SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0題型06二次函數(shù)的零點(diǎn)問題【典例1】已知函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0開口向上,對稱軸為SKIPIF1<0,要想滿足SKIPIF1<0,則要SKIPIF1<0,解得:SKIPIF1<0.故選:B【典例2】方程SKIPIF1<0的一根大于1,一根小于1,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】∵方程SKIPIF1<0的一根大于1,另一根小于1,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(1)判斷二次函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)是否存在零點(diǎn);(2)若二次函數(shù)SKIPIF1<0SKIPIF1<0的兩個零點(diǎn)均為正數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)存在;(2)SKIPIF1<0【詳解】(1)由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,因?yàn)镾KIPIF1<0,所以二次函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)存在零點(diǎn).(2)因?yàn)槎魏瘮?shù)SKIPIF1<0SKIPIF1<0的兩個零點(diǎn)均為正數(shù),所以二次SKIPIF1<0SKIPIF1<0有兩個正實(shí)數(shù)根.設(shè)為SKIPIF1<0,由一元二次方程的根與系數(shù)的關(guān)系得SKIPIF1<0,解得SKIPIF1<0.即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.【變式1】已知關(guān)于SKIPIF1<0的方程SKIPIF1<0,SKIPIF1<0存在兩個不同的實(shí)根,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【詳解】由題意可得,SKIPIF1<0即SKIPIF1<0在SKIPIF1<0時有2個不同的解,設(shè)SKIPIF1<0,根據(jù)雙勾函數(shù)的性質(zhì)可知,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,要使SKIPIF1<0在SKIPIF1<0時有2個不同的解,則SKIPIF1<0,故選:D.【變式2】若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0內(nèi)有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【詳解】由題意SKIPIF1<0在SKIPIF1<0內(nèi)有解,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.故選:A.【變式3】已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)若該函數(shù)有兩個不相等的正零點(diǎn),求SKIPIF1<0的取值范圍;(2)若該函數(shù)有兩個零點(diǎn),一個大于1,另一個小于1,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0【詳解】(1)因?yàn)槎魏瘮?shù)SKIPIF1<0有兩個不相等的正零點(diǎn),且對稱軸SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.(2)因?yàn)槎魏瘮?shù)SKIPIF1<0有兩個零點(diǎn),一個大于1,另一個小于1,所以SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.題型07函數(shù)與方程綜合【典例1】已知函數(shù)SKIPIF1<0,常數(shù)SKIPIF1<0.(1)若SKIPIF1<0是奇函數(shù),求SKIPIF1<0的值;(2)若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有且僅有一個零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)①若SKIPIF1<0有定義,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0符合題意;②若SKIPIF1<0無定義,則SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,不關(guān)于原點(diǎn)對稱,故SKIPIF1<0不是奇函數(shù),不符合題意.綜上,SKIPIF1<0.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍),所以SKIPIF1<0,因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有且僅有一個零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0.【典例2】已知函數(shù)SKIPIF1<0(1)證明:函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;(2)討論關(guān)于x的方程SKIPIF1<0的實(shí)數(shù)解的個數(shù).【答案】(1)證明見解析(2)答案見解析【詳解】(1)任取SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.(2)關(guān)于x的方程SKIPIF1<0的實(shí)數(shù)解的個數(shù),等價于函數(shù)SKIPIF1<0與常函數(shù)SKIPIF1<0的交點(diǎn)個數(shù),由(1)可得:SKIPIF1<0,令SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,結(jié)合(1)可得:函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,令SKIPIF1<0,且SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故函數(shù)SKIPIF1<0的圖像如圖所示:可得函數(shù)SKIPIF1<0的圖像如圖所示:對于函數(shù)SKIPIF1<0與常函數(shù)SKIPIF1<0的交點(diǎn)個數(shù),則有:當(dāng)SKIPIF1<0時,交點(diǎn)個數(shù)為0個;當(dāng)SKIPIF1<0或SKIPIF1<0時,交點(diǎn)個數(shù)為2個;當(dāng)SKIPIF1<0時,交點(diǎn)個數(shù)為3個;當(dāng)SKIPIF1<0時,交點(diǎn)個數(shù)為4個.【變式1】已知函數(shù)SKIPIF1<0為奇函數(shù).(1)求實(shí)數(shù)a的值;(2)若方程SKIPIF1<0在區(qū)間SKIPIF1<0上無解,求實(shí)數(shù)m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)若函數(shù)SKIPIF1<0為奇函數(shù),即SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.(2)由(1)可得:SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,構(gòu)建SKIPIF1<0,對SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,由SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,故方程SKIPIF1<0無解,則實(shí)數(shù)m的取值范圍SKIPIF1<0.【變式2】已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0軸左側(cè)的圖象如圖所示.(1)求函數(shù)SKIPIF1<0的解析式;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有SKIPIF1<0個不相等的實(shí)數(shù)根,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由圖象知:SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的偶函數(shù),SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;綜上所述:SKIPIF1<0;(2)SKIPIF1<0為偶函數(shù),SKIPIF1<0圖象關(guān)于SKIPIF1<0軸對稱,可得SKIPIF1<0圖象如下圖所示,SKIPIF1<0有SKIPIF1<0個不相等的實(shí)數(shù)根,等價于SKIPIF1<0與SKIPIF1<0有SKIPIF1<0個不同的交點(diǎn),由圖象可知:SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.A夯實(shí)基礎(chǔ)一、單選題1.已知函數(shù)SKIPIF1<0,則SKIPIF1<0的零點(diǎn)所在的區(qū)間為(
).A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以由零點(diǎn)存在性定理知,SKIPIF1<0的零點(diǎn)所在的區(qū)間為SKIPIF1<0.故選:B.2.已知方程SKIPIF1<0的解在SKIPIF1<0內(nèi),則SKIPIF1<0(
)A.3B.2C.1D.0【答案】C【詳解】令函數(shù)SKIPIF1<0,顯然函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,SKIPIF1<0,因此函數(shù)SKIPIF1<0的零點(diǎn)SKIPIF1<0,所以方程SKIPIF1<0的解在SKIPIF1<0內(nèi),即SKIPIF1<0.故選:C3.已知函數(shù)SKIPIF1<0的兩個零點(diǎn)都大于2,則實(shí)數(shù)m的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【詳解】因?yàn)槎魏瘮?shù)圖象的開口向上,對稱軸SKIPIF1<0,函數(shù)SKIPIF1<0的兩個零點(diǎn)都大于2,所以SKIPIF1<0,解得SKIPIF1<0.故選:C4.已知二次函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點(diǎn)情況是(
)A.有兩個零點(diǎn)B.有唯一零點(diǎn)C.沒有零點(diǎn)D.不確定【答案】C【詳解】因?yàn)楹瘮?shù)SKIPIF1<0開口向下,又SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)沒有零點(diǎn).故選:C5.已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的零點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0與SKIPIF1<0圖象交點(diǎn)的橫坐標(biāo),由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0與SKIPIF1<0圖象交點(diǎn)的橫坐標(biāo),由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0與SKIPIF1<0圖象交點(diǎn)的橫坐標(biāo),分別作出SKIPIF1<0和SKIPIF1<0的圖象,則由圖象可得SKIPIF1<0,
因?yàn)镾KIPIF1<0和SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故選:B6.設(shè)實(shí)數(shù)a為常數(shù),則函數(shù)SKIPIF1<0存在零點(diǎn)的充分必要條件是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【詳解】因?yàn)楹瘮?shù)SKIPIF1<0存在零點(diǎn),等價于方程SKIPIF1<0在SKIPIF1<0上存在零點(diǎn),注意到SKIPIF1<0的圖像開口向上,對稱軸為SKIPIF1<0,且SKIPIF1<0,故上述條件等價于SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.所以函數(shù)SKIPIF1<0存在零點(diǎn)的充分必要條件是SKIPIF1<0.故選:A.7.已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有五個零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0則SKIPIF1<0,此時SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0則SKIPIF1<0,此時SKIPIF1<0,則SKIPIF1<0,故問題轉(zhuǎn)為SKIPIF1<0,SKIPIF1<0共有四個零點(diǎn),畫出函數(shù)圖象如下可知:則SKIPIF1<0,故選:D
8.享有“數(shù)學(xué)王子”稱號的德國數(shù)學(xué)家高斯,是近代數(shù)學(xué)奠基者之一,SKIPIF1<0被稱為“高斯函數(shù)”,其中SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),例如:SKIPIF1<0,設(shè)SKIPIF1<0為函數(shù)SKIPIF1<0的零點(diǎn),則SKIPIF1<0(
)A.3B.4C.5D.6【答案】B【詳解】因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,則存在唯一零點(diǎn)SKIPIF1<0,使得SKIPIF1<0,由高斯函數(shù)的定義可知,SKIPIF1<0.故選:B.二、多選題9.函數(shù)SKIPIF1<0的零點(diǎn)可以是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】CD【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0的零點(diǎn)是SKIPIF1<0和SKIPIF1<0,故選:CD10.設(shè)SKIPIF1<0為定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0為常數(shù)),則(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.函數(shù)SKIPIF1<0僅有一個零點(diǎn)【答案】ABD【詳解】對A:因?yàn)镾KIPIF1<0是SKIPIF1<0上的奇函數(shù),故SKIPIF1<0,解得SKIPIF1<0,故A正確;對BC:SKIPIF1<0,故B正確,C錯誤;對D:當(dāng)SKIPIF1<0時,SKIPIF1<0;因?yàn)镾KIPIF1<0是增函數(shù),SKIPIF1<0也是增函數(shù),故SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 資產(chǎn)使用協(xié)議書
- 道路搭火協(xié)議書
- 自愿訓(xùn)練協(xié)議書
- 綠城廉潔協(xié)議書
- 選房意向協(xié)議書
- 實(shí)驗(yàn)實(shí)訓(xùn)室借用協(xié)議書
- 遺增撫養(yǎng)協(xié)議書
- 廣西和螞蟻合作協(xié)議書
- 實(shí)習(xí)生技術(shù)轉(zhuǎn)讓協(xié)議書
- 鄭州婚前協(xié)議書
- MOOC 知識圖譜導(dǎo)論-浙江大學(xué) 中國大學(xué)慕課答案
- 室內(nèi)裝飾裝修改造技術(shù)規(guī)程
- 如何看見聲音
- aeo供應(yīng)鏈安全培訓(xùn)
- 物流運(yùn)輸企業(yè)安全隱患排查記錄表
- ISO14001環(huán)境管理體系內(nèi)部審核
- 第5.2課 《飛向太空的航程》同步練習(xí) (原卷版)
- 新概念英語第二冊Lesson8課件
- 白酒行業(yè)財務(wù)知識培訓(xùn)課件
- 智慧倉儲配送機(jī)器人案例
- 《商標(biāo)權(quán)授權(quán)與侵權(quán)》課件
評論
0/150
提交評論