




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省東營市廣饒縣重點中學2021-2022學年中考數學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=100°,則∠B的度數是()A.100° B.80° C.60° D.50°2.⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則n的值為()A.3 B.4 C.6 D.83.下列各數中,比﹣1大1的是()A.0B.1C.2D.﹣34.如圖是一個由4個相同的長方體組成的立體圖形,它的主視圖是()A.B.C.D.5.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據題意可列方程為()A. B. C. D.6.如圖,矩形ABCD中,AB=4,BC=3,F是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.67.正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為()A.30° B.60° C.120° D.180°8.我國古代《易經》一書中記載,遠古時期,人們通過在繩子上打結來記錄數量,即“結繩計數”.如圖,一位母親在從右到左依次排列的繩子上打結,滿七進一,用來記錄孩子自出生后的天數,由圖可知,孩子自出生后的天數是()A.84 B.336 C.510 D.13269.一個幾何體的三視圖如圖所示,那么這個幾何體是()A. B. C. D.10.一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,朝上一面的數字是偶數的概率為().A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知拋物線y=ax2+bx+c=0(a≠0)與軸交于,兩點,若點的坐標為,線段的長為8,則拋物線的對稱軸為直線________________.12.如圖,在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸,則以AB為邊的正方形ABCD的周長為_____.13.分解因式:3x3﹣27x=_____.14.如圖,點A在反比例函數y=(x>0)的圖像上,過點A作AD⊥y軸于點D,延長AD至點C,使CD=2AD,過點A作AB⊥x軸于點B,連結BC交y軸于點E,若△ABC的面積為6,則k的值為________.15.某社區有一塊空地需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數關系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.16.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若,則(用含k的代數式表示).17.計算()()的結果等于_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當∠D=°時,四邊形FOBE是菱形.19.(5分)如圖,已知一次函數的圖象與反比例函數的圖象交于點,與軸、軸交于兩點,過作垂直于軸于點.已知.(1)求一次函數和反比例函數的表達式;(2)觀察圖象:當時,比較.20.(8分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點之間AB的長.(結果精確到0.1米)參考數據:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41421.(10分)小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據以上測量數據,請你幫助小強計算湖中兩個小亭A、B之間的距離.22.(10分)某汽車制造公司計劃生產A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產方案?(2)該公司按照哪種方案生產汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產甲乙兩種鋼板(兩種都生產),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產方案?(直接寫出答案)23.(12分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.24.(14分)如圖,一次函數y=﹣12x+52的圖象與反比例函數y=(1)求反比例函數的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:如圖,翻折△ACD,點A落在A′處,可知∠A=∠A′=100°,然后由圓內接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B2、C【解析】
根據題意可以求出這個正n邊形的中心角是60°,即可求出邊數.【詳解】⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則這個正n邊形的中心角是60°,n的值為6,故選:C【點睛】考查正多邊形和圓,求出這個正多邊形的中心角度數是解題的關鍵.3、A【解析】
用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點睛】本題考查了有理數加法的運算,解題的關鍵是要熟練掌握:“先符號,后絕對值”.4、A【解析】由三視圖的定義可知,A是該幾何體的三視圖,B、C、D不是該幾何體的三視圖.故選A.點睛:從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,看不到的線畫虛線.本題從左面看有兩列,左側一列有兩層,右側一列有一層.5、D【解析】分析:根據乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數式表示出相等關系中的各個部分,列出方程即可.6、A【解析】
根據圖形可以求得BF的長,然后根據圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點睛】本題考查扇形面積的計算、矩形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.7、C【解析】
求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為120°,故選C.【點睛】本題考查旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角,掌握正多邊形的中心角的求解是解題的關鍵8、C【解析】由題意滿七進一,可得該圖示為七進制數,化為十進制數為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數的方法,注意運用七進制轉化為十進制,考查運算能力,屬于基礎題.9、C【解析】由主視圖和左視圖可得此幾何體為柱體,根據俯視圖為三角形可得此幾何體為三棱柱.故選C.10、B【解析】
朝上的數字為偶數的有3種可能,再根據概率公式即可計算.【詳解】依題意得P(朝上一面的數字是偶數)=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.二、填空題(共7小題,每小題3分,滿分21分)11、或x=-1【解析】
由點A的坐標及AB的長度可得出點B的坐標,由拋物線的對稱性可求出拋物線的對稱軸.【詳解】∵點A的坐標為(-2,0),線段AB的長為8,∴點B的坐標為(1,0)或(-10,0).∵拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,∴拋物線的對稱軸為直線x==2或x==-1.故答案為x=2或x=-1.【點睛】本題考查了拋物線與x軸的交點以及二次函數的性質,由拋物線與x軸的交點坐標找出拋物線的對稱軸是解題的關鍵.12、1【解析】
根據題意和二次函數的性質可以求得線段AB的長度,從而可以求得正方形ABCD的周長.【詳解】∵在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,∴點A的橫坐標是0,該拋物線的對稱軸為直線x=﹣,∵點B是這條拋物線上的另一點,且AB∥x軸,∴點B的橫坐標是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周長為:3×4=1,故答案為:1.【點睛】本題考查了二次函數圖象上點的坐標特征、正方形的性質,解題的關鍵是找出所求問題需要的條件.13、3x(x+3)(x﹣3).【解析】
首先提取公因式3x,再進一步運用平方差公式進行因式分解.【詳解】3x3﹣27x=3x(x2﹣9)=3x(x+3)(x﹣3).【點睛】本題考查用提公因式法和公式法進行因式分解的能力.一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.14、1【解析】
連結BD,利用三角形面積公式得到S△ADB=S△ABC=2,則S矩形OBAD=2S△ADB=1,于是可根據反比例函數的比例系數k的幾何意義得到k的值.【詳解】連結BD,如圖,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y軸于點D,AB⊥x軸,∴四邊形OBAD為矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案為:1.【點睛】本題考查了反比例函數的比例系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.15、150【解析】設綠化面積與工作時間的函數解析式為,因為函數圖象經過,兩點,將兩點坐標代入函數解析式得得,將其代入得,解得,∴一次函數解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.16、。【解析】試題分析:如圖,連接EG,∵,∴設,則?!唿cE是邊CD的中點,∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!唷!嘣赗t△ABG中,由勾股定理得:,即?!??!啵ㄖ蝗≌担??!?。17、4【解析】
利用平方差公式計算.【詳解】解:原式=()2-()2=7-3=4.故答案為:4.【點睛】本題考查了二次根式的混合運算.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)30.【解析】
(1)利用切線的性質得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據切線的判定定理得到結論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數.【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點睛】本題考查了切線的判定與性質:經過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.19、(1);(2)【解析】
(1)由一次函數的解析式可得出D點坐標,從而得出OD長度,再由△ODC與△BAC相似及AB與BC的長度得出C、B、A的坐標,進而算出一次函數與反比例函數的解析式;
(2)以A點為分界點,直接觀察函數圖象的高低即可知道答案.【詳解】解:(1)對于一次函數y=kx-2,令x=0,則y=-2,即D(0,-2),
∴OD=2,
∵AB⊥x軸于B,
∴,
∵AB=1,BC=2,
∴OC=4,OB=6,
∴C(4,0),A(6,1)
將C點坐標代入y=kx-2得4k-2=0,
∴k=,
∴一次函數解析式為y=x-2;
將A點坐標代入反比例函數解析式得m=6,
∴反比例函數解析式為y=;
(2)由函數圖象可知:
當0<x<6時,y1<y2;
當x=6時,y1=y2;
當x>6時,y1>y2;【點睛】本題考查了反比例函數與一次函數的交點問題.熟悉函數圖象上點的坐標特征和待定系數法解函數解析式的方法是解答本題的關鍵,同時注意對數形結合思想的認識和掌握.20、新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【解析】
根據題意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的長,再表示出AD的長,進而求出AB的長.【詳解】解:如圖,作CD⊥AB于點D,由題意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新傳送帶AC的長為1.8m,新、原傳送帶觸地點之間AB的長約為1.2m.【點睛】本題考查了坡度坡角問題,正確構建直角三角形再求出BD的長是解題的關鍵.21、1m【解析】
連接AN、BQ,過B作BE⊥AN于點E.在Rt△AMN和在Rt△BMQ中,根據三角函數就可以求得AN,BQ,求得NQ,AE的長,在直角△ABE中,依據勾股定理即可求得AB的長.【詳解】連接AN、BQ,∵點A在點N的正北方向,點B在點Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,過B作BE⊥AN于點E,則BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中兩個小亭A、B之間的距離為1米.【點睛】本題考查勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.22、(1)共有三種方案,分別為①A型號16輛時,B型號24輛;②A型號17輛時,B型號23輛;③A型號18輛時,B型號22輛;(2)當時,萬元;(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【解析】
(1)設A型號的轎車為x輛,可根據題意列出不等式組,根據問題的實際意義推出整數值;(2)根據“利潤=售價-成本”列出一次函數的解析式解答;(3)根據(2)中方案設計計算.【詳解】(1)設生產A型號x輛,則B型號(40-x)輛153634x+42(40-x)1552解得,x可以取值16,17,18共有三種方案,分別為A型號16輛時,B型號24輛A型號17輛時,B型號23輛A型號18輛時,B型號22輛(2)設總利潤W萬元則W==w隨x的增大而減小當時,萬元(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【點睛】本題主要考查了一次函數的應用,以及一元一次不等式組的應用,此題是典型的數學建模問題,要先將實際問題轉化為不等式組解應用題.23、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數法,列方程求二次函數解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,FG=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業節能減排措施
- 體育競技研學旅行計劃
- 外研社三起英語復習計劃
- 電商平臺新媒體運營崗位職責概述
- 電商團隊文化塑造方案及措施
- 心理健康云平臺創業計劃書
- 體育環境對運動表現的影響-洞察闡釋
- 老年慢性病管理的教育與宣教研究-洞察闡釋
- 集體土地租賃合同
- 氣溶膠污染控制技術-第2篇-洞察闡釋
- 小學六年級語文:《常考的10篇文言文》
- 冀教版三至四年級《發展柔韌性練習》評課稿
- 漢語拼音聲母韻母拼讀全表打印版
- 運動系統病例分析01
- 天津市南開區南開中學2022-2023學年物理高二下期末復習檢測試題含解析
- 澠池鋁礦礦產資源開采與生態修復方案
- 功與功率 課件高一下學期物理人教版(2019)必修第二冊
- 成品入庫、發貨流程圖
- 光柵安全檢查作業指導
- 不對稱短路故障分析與計算(電力系統課程設計)
- GB/T 28731-2012固體生物質燃料工業分析方法
評論
0/150
提交評論