




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年江西省臨川市第一中學高考數學試題考前最后一卷預測卷(五)注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,且,則等于()A.4 B.3 C.2 D.12.閱讀如圖所示的程序框圖,運行相應的程序,則輸出的結果為()A. B.6 C. D.3.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.4.已知函數,若,,,則a,b,c的大小關系是()A. B. C. D.5.已知函數且的圖象恒過定點,則函數圖象以點為對稱中心的充要條件是()A. B.C. D.6.若復數,其中為虛數單位,則下列結論正確的是()A.的虛部為 B. C.的共軛復數為 D.為純虛數7.若實數x,y滿足條件,目標函數,則z的最大值為()A. B.1 C.2 D.08.已知數列滿足:,則()A.16 B.25 C.28 D.339.執行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.10.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.8411.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.12.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知內角的對邊分別為外接圓的面積為,則的面積為_________.14.若曲線(其中常數)在點處的切線的斜率為1,則________.15.已知雙曲線的一條漸近線經過點,則該雙曲線的離心率為_______.16.滿足約束條件的目標函數的最小值是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記為數列的前項和,N.(1)求;(2)令,證明數列是等比數列,并求其前項和.18.(12分)設函數().(1)討論函數的單調性;(2)若關于x的方程有唯一的實數解,求a的取值范圍.19.(12分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經濟損失達52億元.某青年志愿者組織調查了某地區的50個農戶在該次臺風中造成的直接經濟損失,將收集的數據分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據頻率分布直方圖估計該地區每個農戶的平均損失(同一組中的數據用該組區間的中點值代表);(2)臺風后該青年志愿者與當地政府向社會發出倡議,為該地區的農戶捐款幫扶,現從這50戶并且損失超過4000元的農戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農戶數為,求的分布列和數學期望.20.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.21.(12分)已知函數(1)求單調區間和極值;(2)若存在實數,使得,求證:22.(10分)已知函數.(1)若是的極值點,求的極大值;(2)求實數的范圍,使得恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由已知結合向量垂直的坐標表示即可求解.【詳解】因為,且,,則.故選:.本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎題.2.D【解析】
用列舉法,通過循環過程直接得出與的值,得到時退出循環,即可求得.【詳解】執行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應該不滿足條件,退出循環,輸出S的值為.故選D.本題主要考查了循環結構的程序框圖的應用,正確依次寫出每次循環得到的與的值是解題的關鍵,難度較易.3.B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯立,可得A,B的縱坐標,利用,求出a,b的關系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.本題考查雙曲線的簡單性質,考查向量知識,考查學生的計算能力,屬于中檔題.4.D【解析】
根據題意,求出函數的導數,由函數的導數與函數單調性的關系分析可得在上為增函數,又由,分析可得答案.【詳解】解:根據題意,函數,其導數函數,則有在上恒成立,則在上為增函數;又由,則;故選:.本題考查函數的導數與函數單調性的關系,涉及函數單調性的性質,屬于基礎題.5.A【解析】
由題可得出的坐標為,再利用點對稱的性質,即可求出和.【詳解】根據題意,,所以點的坐標為,又,所以.故選:A.本題考查指數函數過定點問題和函數對稱性的應用,屬于基礎題.6.D【解析】
將復數整理為的形式,分別判斷四個選項即可得到結果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數,正確本題正確選項:本題考查復數的模長、實部與虛部、共軛復數、復數的分類的知識,屬于基礎題.7.C【解析】
畫出可行域和目標函數,根據平移得到最大值.【詳解】若實數x,y滿足條件,目標函數如圖:當時函數取最大值為故答案選C求線性目標函數的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.8.C【解析】
依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.9.C【解析】
根據程序框圖寫出幾次循環的結果,直到輸出結果是8時.【詳解】第一次循環:第二次循環:第三次循環:第四次循環:第五次循環:第六次循環:第七次循環:第八次循環:所以框圖中①處填時,滿足輸出的值為8.故選:C此題考查算法程序框圖,根據循環條件依次寫出每次循環結果即可解決,屬于簡單題目.10.B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.11.A【解析】
先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.12.B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內角,從而有,于是可得三角形邊長,可得面積.【詳解】設外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.本題考查正弦定理,利用正弦定理求出三角形的內角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵.14.【解析】
利用導數的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.本題考查導數的幾何意義,考查學生的基本運算能力,是一道基礎題.15.【解析】
根據雙曲線方程,可得漸近線方程,結合題意可表示,再由雙曲線a,b,c關系表示,最后結合雙曲線離心率公式計算得答案.【詳解】因為雙曲線為,所以該雙曲線的漸近線方程為.又因為其一條漸近線經過點,即,則,由此可得.故答案為:.本題考查由雙曲線的漸近線構建方程表示系數關系進而求離心率,屬于基礎題.16.-2【解析】
可行域是如圖的菱形ABCD,代入計算,知為最小.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見詳解,【解析】
(1)根據,可得,然后作差,可得結果.(2)根據(1)的結論,用取代,得到新的式子,然后作差,可得結果,最后根據等比數列的前項和公式,可得結果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數列是首項為,公比為的等比數列所以本題主要考查遞推公式以及之間的關系的應用,考驗觀察能力以及分析能力,屬中檔題.18.(1)當時,遞增區間時,無遞減區間,當時,遞增區間時,遞減區間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數只有一個實數解,根據(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區間時,無遞減區間,當時,遞增區間時,遞減區間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數只有一個零點,原方程只有一個解,當且遞增區間時,遞減區間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.本題考查導數的綜合應用,涉及到單調性、零點、極值最值,考查分類討論和等價轉化思想,屬于中檔題.19.(1)3360元;(2)見解析【解析】
(1)根據頻率分布直方圖計算每個農戶的平均損失;(2)根據頻率分布直方圖計算隨機變量X的可能取值,再求X的分布列和數學期望值.【詳解】(1)記每個農戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農戶共有0.00003×2000×50=3(戶),隨機抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數學期望為E(X)=0×+1×+2×=.本題考查了頻率分布直方圖與離散型隨機變量的分布列與數學期望計算問題,屬于中檔題.20.(1),(2)最大值,最小值【解析】
(1)由曲線的參數方程,得兩式平方相加求解,根據直線的極坐標方程,展開有,再根據求解.(2)因為曲線C是一個半圓,利用數形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:本題主要考查參數方程,普通方程及極坐標方程的轉化和直線與圓的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.21.(1)時,函數單調遞增,,函數單調遞減,;(2)見解析【解析】
(1)求出函數的定義域與導函數,利用導數求函數的單調區間,即可得到函數的極值;(2)易得且,要證明,即證,即證,即對恒成立,構造函數,,利用導數研究函數的單調性與最值,即可得證;【詳解】解:(1)因為定義域為,所以,時,,即在和上單調遞增,當時,,即函數在單調遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,,則令,解得,即在上單調遞增;令,解得,即在上單調遞減;則在取得極小值,也就是最小值,從而結論得證.本題考查利用導數研究函數的單調性與極值,利用導數證明不等式,考查運算求解能力,考查函數與方程思想,屬于中檔題.22.(1).(2)【解析】
(1)先對函數求導,結合極值存在的條件可求t,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 1033.1-2016郵輪旅游服務規范第1部分:旅行社
- DB31/ 581-2019礦渣粉單位產品能源消耗限額
- 2025年北京寫字樓租賃合同書
- 谷物種植與農業產業升級考核試卷
- 運動品牌跨界合作考核試卷
- 家用制冷設備在移動住宅的應用案例考核試卷
- 實踐篇:如何設計研學旅行手冊?(附案例分析)
- 高端電商平臺全流程商品視覺呈現合同
- 網紅奶茶品牌全國區域代理合作協議
- 網絡漏洞檢測與分析平臺租賃服務合同
- 存款保險培訓課件
- 省煤器安裝方案
- 機械裝配技術試題及答案
- 云服務架構試題及答案
- 碎石樁工程施工監理細則
- 阿里巴巴薪酬管理制度
- 2025年河南省安陽市滑縣中考一模化學試題(含答案)
- 江蘇省南通市南通第一中學2025屆高考英語試題(英語試題)預測押題密卷I卷(全國1卷)含解析
- 全國職業院校技能大賽高職組(商務數據分析賽項)備賽試題庫(含答案)
- 《中華人民共和國職業分類大典》(2022年版)各行業職業表格統計版(含數字職業)
- 數字孿生數據映射機制-深度研究
評論
0/150
提交評論