2023-2024學年黑龍江齊齊哈爾市泰來縣中考押題數學預測卷含解析_第1頁
2023-2024學年黑龍江齊齊哈爾市泰來縣中考押題數學預測卷含解析_第2頁
2023-2024學年黑龍江齊齊哈爾市泰來縣中考押題數學預測卷含解析_第3頁
2023-2024學年黑龍江齊齊哈爾市泰來縣中考押題數學預測卷含解析_第4頁
2023-2024學年黑龍江齊齊哈爾市泰來縣中考押題數學預測卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年黑龍江齊齊哈爾市泰來縣中考押題數學預測卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=2.已知在一個不透明的口袋中有4個形狀、大小、材質完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.93.(2011貴州安順,4,3分)我市某一周的最高氣溫統計如下表:最高氣溫(℃)

25

26

27

28

天數

1

1

2

3

則這組數據的中位數與眾數分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,274.已知方程的兩個解分別為、,則的值為()A. B. C.7 D.35.某學校組織藝術攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×56.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現彩虹7.對于實數x,我們規定表示不大于x的最大整數,例如,,,若,則x的取值可以是()A.40 B.45 C.51 D.568.射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環數均為8.7環,方差分別為,,,,則四人中成績最穩定的是()A.甲 B.乙 C.丙 D.丁9.將不等式組的解集在數軸上表示,下列表示中正確的是()A. B. C. D.10.下列說法不正確的是()A.某種彩票中獎的概率是,買1000張該種彩票一定會中獎B.了解一批電視機的使用壽命適合用抽樣調查C.若甲組數據的標準差S甲=0.31,乙組數據的標準差S乙=0.25,則乙組數據比甲組數據穩定D.在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件11.一個盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.12.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.14.如圖所示:在平面直角坐標系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.15.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.16.如圖,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中點,點E在BA的延長線上,連接ED,若AE=2,則DE的長為_____.17.若兩個相似三角形的面積比為1∶4,則這兩個相似三角形的周長比是__________.18.對于實數a,b,定義運算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,則x的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)2018年春節,西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。20.(6分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.21.(6分)如圖,在四邊形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度數;四邊形ABCD的面積(結果保留根號).22.(8分)小明參加某個智力競答節目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).如果小明第一題不使用“求助”,那么小明答對第一道題的概率是.如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)23.(8分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.24.(10分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時發現公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.25.(10分)在平面直角坐標系中,二次函數y=x2+ax+2a+1的圖象經過點M(2,-3)。(1)求二次函數的表達式;(2)若一次函數y=kx+b(k≠0)的圖象與二次函數y=x2+ax+2a+1的圖象經過x軸上同一點,探究實數k,b滿足的關系式;(3)將二次函數y=x2+ax+2a+1的圖象向右平移2個單位,若點P(x0,m)和Q(2,n)在平移后的圖象上,且m>n,結合圖象求x0的取值范圍.26.(12分)如圖,在平面直角坐標系中,二次函數y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.27.(12分)2018年“清明節”前夕,宜賓某花店用1000元購進若干菊花,很快售完,接著又用2500元購進第二批花,已知第二批所購花的數量是第一批所購花數的2倍,且每朵花的進價比第一批的進價多元.(1)第一批花每束的進價是多少元.(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】【分析】直接利用根與系數的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數的性質得到x1、x2異號,且負數的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數的關系,熟練掌握相關內容是解題的關鍵.2、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數占總情況數的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數有6種,所以概率為12故選D.考點:列表法與樹狀法.3、A【解析】根據表格可知:數據25出現1次,26出現1次,27出現2次,28出現3次,∴眾數是28,這組數據從小到大排列為:25,26,27,27,28,28,28∴中位數是27∴這周最高氣溫的中位數與眾數分別是27,28故選A.4、D【解析】

由根與系數的關系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結論.【詳解】解:∵方程x2?5x+2=0的兩個解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點睛】本題考查了根與系數的關系,解題的關鍵是根據根與系數的關系得出x1+x2=5,x1?x2=2.本題屬于基礎題,難度不大,解決該題型題目時,根據根與系數的關系得出兩根之和與兩根之積是關鍵.5、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關系,根據兩個矩形的面積3倍的關系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數x的代數式表示,而列出方程,屬于基礎題.6、B【解析】分析:根據必然事件、不可能事件、隨機事件的概念可區別各類事件:A、打開電視機,正在播放茂名新聞,可能發生,也可能不發生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現彩虹,可能發生,也可能不發生,故本選項錯誤.故選B.7、C【解析】

解:根據定義,得∴解得:.故選C.8、D【解析】

根據方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績最穩定,故選D.【點睛】此題主要考查了方差,關鍵是掌握方差越小,穩定性越大.9、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數軸上即可.解:不等式可化為:,即.

∴在數軸上可表示為.故選B.“點睛”不等式組的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.10、A【解析】試題分析:根據抽樣調查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎的概率是,只是一種可能性,買1000張該種彩票不一定會中獎,故錯誤;B、調查電視機的使用壽命要毀壞電視機,有破壞性,適合用抽樣調查,故正確;C、標準差反映了一組數據的波動情況,標準差越小,數據越穩定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點:1.概率公式;2.全面調查與抽樣調查;3.標準差;4.隨機事件.11、C【解析】

畫樹狀圖求出共有12種等可能結果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結果及符合題意的結果是本題的解題關鍵.12、B【解析】分析:根據三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】

(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).14、1+【解析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應用能力,能夠正確的構建出與已知和所求相關的直角三角形是解答此題的關鍵.15、1【解析】

由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據相似三角形的性質可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【點睛】本題考查相似三角形的判定與性質,解題的關鍵是掌握相似三角形的判定與性質.16、2【解析】

過點E作EF⊥BC于F,根據已知條件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根據勾股定理得到BF=EF=3,求得DF=BF?BD=,根據勾股定理即可得到結論.【詳解】解:過點E作EF⊥BC于F,∴∠BFE=90°,∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC=4,∴△BEF是等腰直角三角形,∵BE=AB+AE=6,∴BF=EF=3,∵D是BC的中點,∴BD=2,∴DF=BF?BD,∴DE===2.故答案為2.【點睛】本題考查了等腰直角三角形的性質,勾股定理,正確的作出輔助線構造等腰直角三角形是解題的關鍵.17、【解析】試題分析:∵兩個相似三角形的面積比為1:4,∴這兩個相似三角形的相似比為1:1,∴這兩個相似三角形的周長比是1:1,故答案為1:1.考點:相似三角形的性質.18、2【解析】

根據新定義運算對式子進行變形得到關于x的方程,解方程即可得解.【詳解】由題意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案為2.【點睛】本題考查了解方程,涉及到完全平方公式、多項式乘法的運算等,根據題意正確得到方程是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】

(1)根據概率=所求情況數與總情況數之比代入解得即可.(2)將小明吃到的前兩個元宵的所有情況列表出來即可求解.【詳解】(1)5個元宵中,五仁餡的有2個,故小明吃到的第一個元宵是五仁餡的概率是;(2)小明吃到的前兩個元宵的所有情況列表如下(記黑芝麻餡的兩個分別為、,五仁餡的兩個分別為、,桂花餡的一個為c):由圖可知,共有20種等可能的情況,其中小明吃到的前兩個元宵是同一種餡料的情況有4種,故小明吃到的前兩個元宵是同一種餡料的概率是.【點睛】本題考查的是用列表法求概率.列表法可以不重復不遺漏的列出所有可能的結果,用到的知識點為:概率=所求:情況數與總情況數之比.20、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直線經過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標,然后分兩種情況討論即可;(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標是,點的坐標是.∵拋物線的頂點是點,∴點的坐標是.∵點是軸上一點,∴設點的坐標是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標是.②如果,那么,解得,∴點的坐標是.綜上所述:符合要求的點有兩個,其坐標分別是和.(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當a=-1時,=;當a=1時,=;∴點的坐標是或.點睛:本題是二次函數的綜合題.考查了二次函數的性質、解析式的求法以及相似三角形的性質.解答(1)問的關鍵是要分類討論,解答(3)的關鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.21、(1);(2)【解析】

(1)連接AC,由勾股定理求出AC的長,再根據勾股定理的逆定理判斷出△ACD的形狀,進而可求出∠BAD的度數;

(2)由(1)可知△ABC和△ADC是Rt△,再根據S四邊形ABCD=S△ABC+S△ADC即可得出結論.【詳解】解:(1)連接AC,如圖所示:∵AB=BC=1,∠B=90°∴AC=,又∵AD=1,DC=,∴AD2+AC2=3CD2=()2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四邊形ABCD=S△ABC+S△ADC=1×1×+1××=.【點睛】考查的是勾股定理、勾股定理的逆定理及三角形的面積,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.22、(1);(2);(3)第一題.【解析】

(1)由第一道單選題有3個選項,直接利用概率公式求解即可求得答案;(2)畫出樹狀圖,再由樹狀圖求得所有等可能的結果與小明順利通關的情況,繼而利用概率公式即可求得答案;(3)由如果在第一題使用“求助”小明順利通關的概率為:;如果在第二題使用“求助”小明順利通關的概率為:;即可求得答案.【詳解】(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率=;故答案為;(2)畫樹狀圖為:共有9種等可能的結果數,其中兩個都正確的結果數為1,所以小明順利通關的概率為;(3)建議小明在第一題使用“求助”.理由如下:小明將“求助”留在第一題,畫樹狀圖為:小明將“求助”留在第一題使用,小明順利通關的概率=,因為>,所以建議小明在第一題使用“求助”.【點睛】本題考查的是概率,熟練掌握樹狀圖法和概率公式是解題的關鍵.23、(1)每部型手機的銷售利潤為元,每部型手機的銷售利潤為元;(2)①;②手機店購進部型手機和部型手機的銷售利潤最大;(3)手機店購進部型手機和部型手機的銷售利潤最大.【解析】

(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元,根據題意列出方程組求解即可;(2)①根據總利潤=銷售A型手機的利潤+銷售B型手機的利潤即可列出函數關系式;②根據題意,得,解得,根據一次函數的增減性可得當當時,取最大值;(3)根據題意,,,然后分①當時,②當時,③當時,三種情況進行討論求解即可.【詳解】解:(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.根據題意,得,解得答:每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.(2)①根據題意,得,即.②根據題意,得,解得.,,隨的增大而減小.為正整數,當時,取最大值,.即手機店購進部型手機和部型手機的銷售利潤最大.(3)根據題意,得.即,.①當時,隨的增大而減小,當時,取最大值,即手機店購進部型手機和部型手機的銷售利潤最大;②當時,,,即手機店購進型手機的數量為滿足的整數時,獲得利潤相同;③當時,,隨的增大而增大,當時,取得最大值,即手機店購進部型手機和部型手機的銷售利潤最大.【點睛】本題主要考查一次函數的應用,二元一次方程組的應用,解此題的關鍵在于熟練掌握一次函數的增減性.24、(1);(2)【解析】

(1)根據概率公式計算可得;(2)畫樹狀圖列出所有等可能結果,從中找到符合要求的結果數,利用概率公式計算可得.【詳解】解:(1)由于共有A、B、W三個座位,∴甲選擇座位W的概率為,故答案為:;(2)畫樹狀圖如下:由圖可知,共有6種等可能結果,其中甲、乙選擇相鄰的座位有兩種,所以P(甲乙相鄰)==.【點睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數與總情況數之比.25、(1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.【解析】

(1)將點M坐標代入y=x2+ax+2a+1,求出a的值,進而可得到二次函數表達式;(2)先求出拋物線與x軸的交點,將交點代入一次函數解析式,即可得到k,b滿足的關系;(3)先求出平移后的新拋物線的解析式,確定新拋物線的對稱軸以及Q的對稱點Q′,根據m>n結合圖像即可得到x0的取值范圍.【詳解】(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,因此,二次函數的表達式為:y=x2-2x-3;(2)y=x2-2x-3與x軸的交點是:(3,0),(-1,0).當y=kx+b(k≠0)經過(3,0)時,3k+b=0;當y=kx+b(k≠0)經過(-1,0)時,k=b.(3)將二次函數y=x2-2x-3的圖象向右平移2個單位得到y=x2-6x+5,對稱軸是直線x=3,因此Q(2,n)在圖象上的對稱點是(1,n),若點P(x0,m)使得m>n,結合圖象可以得出x0<2或x0>1.【點睛】本題主要考查二次函數的圖像和性質,熟練掌握這些知識點是解題的關鍵.26、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據二次函數的圖象與x軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論