




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的共軛復數是,且(為虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)3.已知集合,則()A. B.C. D.4.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數的值為B.負相關,相關系數的值為C.負相關,相關系數的值為D.正相關,相關負數的值為5.關于函數,有下述三個結論:①函數的一個周期為;②函數在上單調遞增;③函數的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③6.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.7.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.8.已知x,y滿足不等式組,則點所在區域的面積是()A.1 B.2 C. D.9.設集合(為實數集),,,則()A. B. C. D.10.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.511.已知符號函數sgnxf(x)是定義在R上的減函數,g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]12.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結果是()A.1.1 B.1 C.2.9 D.2.8二、填空題:本題共4小題,每小題5分,共20分。13.中,角的對邊分別為,且成等差數列,若,,則的面積為__________.14.若,則=____,=___.15.已知函數的圖象在處的切線斜率為,則______.16.已知,滿足,則的展開式中的系數為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.18.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.19.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數方程為(為參數),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數列,求a的值。20.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.21.(12分)已知函數,其中為實常數.(1)若存在,使得在區間內單調遞減,求的取值范圍;(2)當時,設直線與函數的圖象相交于不同的兩點,,證明:.22.(10分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數在復平面內對應的點為,此點位于第四象限.故選D【點睛】本題主要考查了復數相等、復數表示的點知識,考查了方程思想,屬于基礎題.2、C【解析】
首先判斷出為假命題、為真命題,然后結合含有簡單邏輯聯結詞命題的真假性,判斷出正確選項.【詳解】根據線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內,命題為假命題;根據線面垂直的定義,我們易得命題若直線平面,則若直線與平面內的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點睛】本小題主要考查線面平行與垂直有關命題真假性的判斷,考查含有簡單邏輯聯結詞的命題的真假性判斷,屬于基礎題.3、C【解析】
由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數軸求解.注意端點處是實心圓還是空心圓.4、C【解析】
根據正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數為負.故選:C.【點睛】本題考查變量的相關關系,考查正相關和負相關的區別.掌握正負相關的定義是解題基礎.5、C【解析】
①用周期函數的定義驗證.②當時,,,再利用單調性判斷.③根據平移變換,函數的值域等價于函數的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數的值域等價于函數的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.6、B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.7、D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.【點睛】本小題主要考查對數運算,屬于基礎題.8、C【解析】
畫出不等式表示的平面區域,計算面積即可.【詳解】不等式表示的平面區域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區域面積的求法,考查數形結合思想和運算能力,屬于常考題.9、A【解析】
根據集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎題.10、C【解析】
由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.11、A【解析】
根據符號函數的解析式,結合f(x)的單調性分析即可得解.【詳解】根據題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數,當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數新定義問題,涉及函數單調性辨析,關鍵在于讀懂定義,根據自變量的取值范圍分類討論.12、C【解析】
根據程序框圖的模擬過程,寫出每執行一次的運行結果,屬于基礎題.【詳解】初始值,第一次循環:,;第二次循環:,;第三次循環:,;第四次循環:,;第五次循環:,;第六次循環:,;第七次循環:,;第九次循環:,;第十次循環:,;所以輸出.故選:C【點睛】本題考查了循環結構的程序框圖的讀取以及運行結果,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
由A,B,C成等差數列得出B=60°,利用正弦定理得進而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數列的性質,三角形的面積公式,考查正弦定理的應用,屬于基礎題.14、12821【解析】
令,求得的值.利用展開式的通項公式,求得的值.【詳解】令,得.展開式的通項公式為,當時,為,即.【點睛】本小題主要考查二項式展開式的通項公式,考查賦值法求解二項式系數有關問題,屬于基礎題.15、【解析】
先對函數f(x)求導,再根據圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數得,∵函數f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點睛】本題考查了根據曲線上在某點切線方程的斜率求參數的問題,屬于基礎題.16、1【解析】
根據二項式定理求出,然后再由二項式定理或多項式的乘法法則結合組合的知識求得系數.【詳解】由題意,.∴的展開式中的系數為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應用是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見詳解;(2).【解析】
(1)因為折紙和粘合不改變矩形,和菱形內部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關于的垂線,發現此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因為和粘在一起.,A,C,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連結AH,因為AB平面BCGE,所以而又,故平面,所以.又因為所以是二面角的平面角,而在中,又因為故,所以.而在中,,即二面角的度數為.【點睛】很新穎的立體幾何考題.首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉化為求二面角的平面角問題考查考生的空間想象能力.18、另一個特征值為,對應的一個特征向量【解析】
根據特征多項式的一個零點為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應的一個特征向量.【詳解】矩陣的特征多項式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設對應的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應的一個特征向量【點睛】本題考查了矩陣的特征值以及特征向量,需掌握特征多項式的計算形式,屬于基礎題.19、(1)l的普通方程;C的直角坐標方程;(2).【解析】
(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數即可得到直線的直角坐標方程;(2)將直線的參數方程,代入曲線的方程,利用參數的幾何意義即可得出,從而建立關于的方程,求解即可.【詳解】(1)由直線l的參數方程消去參數t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標方程.(2)將代入拋物線得由已知成等比數列,即,,,整理得(舍去)或.【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數方程中的參數的幾何意義是解題的關鍵.20、(1)見解析;(2)【解析】
(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標原點,以,,的方向為,,軸的正方向,建立空間直角坐標系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設平面的法向量,由,得,令,得,所以平面的法向量,同理,設平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學生的運算求解能力,是一道中檔題.21、(1);(2)見解析.【解析】
(1)將所求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東省佛山市順德區容桂中學2023-2024學年中考數學全真模擬試卷含解析
- 2025年公司級安全培訓考試試題及答案完美版
- 2025公司項目部安全培訓考試試題帶答案(研優卷)
- 賓館安全管理課件
- 2025項目管理人員安全培訓考試試題(完整)
- 2024-2025新入職工入職安全培訓考試試題答案新
- 2025年承包商入廠安全培訓考試試題及一套參考答案
- 2025年員工安全培訓考試試題附答案【輕巧奪冠】
- 2025年工廠職工安全培訓考試試題及參考答案(典型題)
- 2025年安全管理員安全培訓考試試題答案4A
- 壓力容器焊縫檢測
- 鐵路高級線路工試題
- 小學語文項目式學習模式案例:美妙的“童話小鎮”集市(二下)
- 2024年江蘇省南京市聯合體中考三模英語試題(解析版)
- DL∕T 1502-2016 廠用電繼電保護整定計算導則
- 四年級數學脫式計算練習題100道
- 租賃托管合同模板
- 居間人居間費用分配協議范本
- 鋰電池起火應急演練
- 第7課 珍視親情 學會感恩(課件+視頻)-【中職專用】高一思想政治《心理健康與職業生涯》(高教版2023基礎模塊)
- 2022年四川省阿壩州中考數學試卷
評論
0/150
提交評論