焦作市達標名校2024屆中考數學模擬試題含解析_第1頁
焦作市達標名校2024屆中考數學模擬試題含解析_第2頁
焦作市達標名校2024屆中考數學模擬試題含解析_第3頁
焦作市達標名校2024屆中考數學模擬試題含解析_第4頁
焦作市達標名校2024屆中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

焦作市達標名校2024屆中考數學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)2.一組數據3、2、1、2、2的眾數,中位數,方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.23.一個由圓柱和圓錐組成的幾何體如圖水平放置,其主(正)視圖為()A. B. C. D.4.不等式組中兩個不等式的解集,在數軸上表示正確的是A. B.C. D.5.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F,G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.6.若,則()A. B. C. D.7.函數y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>48.運用乘法公式計算(3﹣a)(a+3)的結果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2 D.a2﹣3a+99.下列幾何體中,主視圖和俯視圖都為矩形的是(

)A. B. C. D.10.計算的結果為()A.2 B.1 C.0 D.﹣1二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:a3-12a2+36a=______.12.在比例尺為1:50000的地圖上,量得甲、乙兩地的距離為12厘米,則甲、乙兩地的實際距離是______千米.13.在平面直角坐標系中,拋物線y=x2+x+2上有一動點P,直線y=﹣x﹣2上有一動線段AB,當P點坐標為_____時,△PAB的面積最小.14.一輛汽車在坡度為的斜坡上向上行駛130米,那么這輛汽車的高度上升了__________米.15.觀察下列圖形,若第1個圖形中陰影部分的面積為1,第2個圖形中陰影部分的面積為,第3個圖形中陰影部分的面積為,第4個圖形中陰影部分的面積為,…則第n個圖形中陰影部分的面積為_____.(用字母n表示)16.函數中自變量x的取值范圍是_____;函數中自變量x的取值范圍是______.17.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應點為,當的長度最小時,的長為__________.三、解答題(共7小題,滿分69分)18.(10分)太原市志愿者服務平臺旨在弘揚“奉獻、關愛、互助、進步”的志愿服務精神,培育志思服務文化,推動太原市志愿服務的制度化、常態化,弘揚社會正能量,截止到2018年5月9日16:00,在該平臺注冊的志愿組織數達2678個,志愿者人數達247951人,組織志愿活動19748次,累計志愿服務時間3889241小時,學校為了解共青團員志愿服務情況,調查小組根據平臺數據進行了抽樣問卷調查,過程如下:(1)收集、整理數據:從九年級隨機抽取40名共青團員,將其志愿服務時間按如下方式分組(A:0~5小時;B:5~10小時;C:10~15小時;D:15~20小時;E:20~25小時;F:25~30小時,注:每組含最小值,不含最大值)得到這40名志愿者服務時間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數據整理在如下的頻數分布表中,請你補充其中的數據:志愿服務時間ABCDEF頻數34107(2)描述數據:根據上面的頻數分布表,小明繪制了如下的頻數直方圖(圖1),請將空缺的部分補充完整;(3)分析數據:①調查小組從八年級共青團員中隨機抽取40名,將他們的志愿服務時間按(1)題的方式整理后,畫出如圖2的扇形統計圖.請你對比八九年級的統計圖,寫出一個結論;②校團委計劃組織志愿服務時間不足10小時的團員參加義務勞動,根據上述信息估計九年級200名團員中參加此次義務勞動的人數約為人;(4)問題解決:校團委計劃組織中考志愿服務活動,共甲、乙、丙三個服務點,八年級的小穎和小文任意選擇一個服務點參與志服務,求兩人恰好選在同一個服務點的概率.19.(5分)中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調查,根據調查結果繪制成如圖所示的兩個不完整的統計圖,請結合圖中信息解決下列問題:(1)本次調查了名學生,扇形統計圖中“1部”所在扇形的圓心角為度,并補全條形統計圖;(2)此中學共有1600名學生,通過計算預估其中4部都讀完了的學生人數;(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.20.(8分)如圖,直角坐標系中,直線與反比例函數的圖象交于A,B兩點,已知A點的縱坐標是2.(1)求反比例函數的解析式.(2)將直線沿x軸向右平移6個單位后,與反比例函數在第二象限內交于點C.動點P在y軸正半軸上運動,當線段PA與線段PC之差達到最大時,求點P的坐標.21.(10分)計算:﹣(﹣2016)0+|﹣3|﹣4cos45°.22.(10分)某工廠去年的總收入比總支出多50萬元,計劃今年的總收入比去年增加10%,總支出比去年節約20%,按計劃今年總收入將比總支出多100萬元.今年的總收入和總支出計劃各是多少萬元?23.(12分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.24.(14分)如圖,已知矩形ABCD中,AB=3,AD=m,動點P從點D出發,在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關于直線PC的對稱點E,設點P的運動時間為t(s).(1)若m=5,求當P,E,B三點在同一直線上時對應的t的值.(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于2,求所有這樣的m的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點A的坐標為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點C的坐標為(,﹣1).故選A.【點睛】本題考查了正方形的性質、坐標與圖形性質、全等三角形的判定與性質;熟練掌握正方形的性質,證明三角形全等得出對應邊相等是解決問題的關鍵.2、B【解析】試題解析:從小到大排列此數據為:1,2,2,2,3;數據2出現了三次最多為眾數,2處在第3位為中位數.平均數為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數是2,眾數是2,方差為0.1.故選B.3、A【解析】【分析】根據主視圖是從幾何體正面看得到的圖形,認真觀察實物,可得這個幾何體的主視圖為長方形上面一個三角形,據此即可得.【詳解】觀察實物,可知這個幾何體的主視圖為長方體上面一個三角形,只有A選項符合題意,故選A.【名師點睛】本題考查了幾何體的主視圖,明確幾何體的主視圖是從幾何體的正面看得到的圖形是解題的關鍵.4、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數軸上表示為:,故選B.5、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F,G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質;3.矩形的性質.6、D【解析】

等式左邊為非負數,說明右邊,由此可得b的取值范圍.【詳解】解:,

,解得故選D.【點睛】本題考查了二次根式的性質:,.7、B【解析】

根據二次根式的性質,被開方數大于等于0,列不等式求解.【詳解】根據題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.【點睛】本題主要考查函數自變量的取值范圍的知識點,注意:二次根式的被開方數是非負數.8、C【解析】

根據平方差公式計算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【點睛】本題主要考查平方差公式,解題的關鍵是應用平方差公式計算時,應注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數;②右邊是相同項的平方減去相反項的平方.9、B【解析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項錯誤;B、主視圖為矩形,俯視圖為矩形,故B選項正確;C、主視圖,俯視圖均為圓,故C選項錯誤;D、主視圖為矩形,俯視圖為三角形,故D選項錯誤.故選:B.10、B【解析】

按照分式運算規則運算即可,注意結果的化簡.【詳解】解:原式=,故選擇B.【點睛】本題考查了分式的運算規則.二、填空題(共7小題,每小題3分,滿分21分)11、a(a-6)2【解析】

原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.12、【解析】

本題可根據比例線段進行求解.【詳解】解:因為在比例尺為1:50000的地圖上甲,乙兩地的距離12cm,所以,甲、乙的實際距離x滿足12:x=1:50000,即x=12=600000cm=6km.故答案為6.【點睛】本題主要考查比例尺和比例線段的相關知識.13、(-1,2)【解析】

因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,平移直線與拋物線的切點即為P點,然后求得平移后的直線,聯立方程,解方程即可.【詳解】因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,若直線向上平移與拋物線相切,切點即為P點,設平移后的直線為y=-x-2+b,∵直線y=-x-2+b與拋物線y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,則△=4-4(4-b)=0,∴b=3,∴平移后的直線為y=-x+1,解得x=-1,y=2,∴P點坐標為(-1,2),故答案為(-1,2).【點睛】本題主要考查了二次函數圖象上點的坐標特征,三角形的面積以及解方程等,理解直線向上平移與拋物線相切,切點即為P點是解題的關鍵.14、50.【解析】

根據坡度的定義可以求得AC、BC的比值,根據AC、BC的比值和AB的長度即可求得AC的值,即可解題.【詳解】解:如圖,米,設,則,則,解得,故答案為:50.【點睛】本題考查了勾股定理在直角三角形中的運用,坡度的定義及直角三角形中三角函數值的計算,屬于基礎題.15、n﹣1(n為整數)【解析】試題分析:觀察圖形可得,第1個圖形中陰影部分的面積=()0=1;第2個圖形中陰影部分的面積=()1=;第3個圖形中陰影部分的面積=()2=;第4個圖形中陰影部分的面積=()3=;…根據此規律可得第n個圖形中陰影部分的面積=()n-1(n為整數)?考點:圖形規律探究題.16、x≠2x≥3【解析】

根據分式的意義和二次根式的意義,分別求解.【詳解】解:根據分式的意義得2-x≠0,解得x≠2;根據二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【點睛】數自變量的范圍一般從幾個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為0;(3)當函數表達式是二次根式時,被開方數為非負數.17、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據“等腰三角形三線合一”可得,因為,所以.在中,根據勾股定理可得,.因為梯形沿直線折疊,點的對應點為,根據翻折的性質可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當C、A′、P在同一條直線時CA′取最值,由此結合直角三角形勾股定理、等邊三角形性質求得此時CQ的長度即可.三、解答題(共7小題,滿分69分)18、(1)7,9;(2)見解析;(3)①在15~20小時的人數最多;②35;(4).【解析】

(1)觀察統計圖即可得解;(2)根據題意作圖;(3)①根據兩個統計圖解答即可;②根據圖1先算出不足10小時的概率再乘以200人即可;(4)根據題意畫出樹狀圖即可解答.【詳解】解:(1)C的頻數為7,E的頻數為9;故答案為7,9;(2)補全頻數直方圖為:(3)①八九年級共青團員志愿服務時間在15~20小時的人數最多;②200×=35,所以估計九年級200名團員中參加此次義務勞動的人數約為35人;故答案為35;(4)畫樹狀圖為:共有9種等可能的結果數,其中兩人恰好選在同一個服務點的結果數為3,所以兩人恰好選在同一個服務點的概率==.【點睛】本題考查了條形統計圖與扇形統計圖與樹狀圖法,解題的關鍵是熟練的掌握條形統計圖與扇形統計圖與樹狀圖法.19、(1)40、126(2)240人(3)【解析】

(1)用2部的人數10除以2部人數所占的百分比25%即可求出本次調查的學生數,根據扇形圓心角的度數=部分占總體的百分比×360°,即可得到“1部”所在扇形的圓心角;(2)用1600乘以4部所占的百分比即可;(3)根據樹狀圖所得的結果,判斷他們選中同一名著的概率.【詳解】(1)調查的總人數為:10÷25%=40,∴1部對應的人數為40﹣2﹣10﹣8﹣6=14,則扇形統計圖中“1部”所在扇形的圓心角為:×360°=126°;故答案為40、126;(2)預估其中4部都讀完了的學生有1600×=240人;(3)將《西游記》、《三國演義》、《水滸傳》、《紅樓夢》分別記作A,B,C,D,畫樹狀圖可得:共有16種等可能的結果,其中選中同一名著的有4種,故P(兩人選中同一名著)==.【點睛】本題考查了扇形統計圖和條形統計圖的綜合,用樣本估計總體,列表法或樹狀圖法求概率.解答此類題目,要善于發現二者之間的關聯點,即兩個統計圖都知道了哪個量的數據,從而用條形統計圖中的具體數量除以扇形統計圖中占的百分比,求出樣本容量,進而求解其它未知的量.20、(1);(2)P(0,6)【解析】試題分析:(1)先求得點A的坐標,再利用待定系數法求得反比例函數的解析式即可;(2)連接AC,根據三角形兩邊之差小于第三邊知:當A、C、P不共線時,PA-PC<AC;當A、C、P不共線時,PA-PC=AC;因此,當點P在直線AC與y軸的交點時,PA-PC取得最大值.先求得平移后直線的解析式,再求得平移后直線與反比例函數的圖象的交點坐標,最后求直線AC的解析式,即可求得點P的坐標.試題解析:令一次函數中,則,解得:,即點A的坐標為(-4,2).∵點A(-4,2)在反比例函數的圖象上,∴k=-4×2=-8,∴反比例函數的表達式為.連接AC,根據三角形兩邊之差小于第三邊知:當A、C、P不共線時,PA-PC<AC;當A、C、P不共線時,PA-PC=AC;因此,當點P在直線AC與y軸的交點時,PA-PC取得最大值.設平移后直線于x軸交于點F,則F(6,0)設平移后的直線解析式為,將F(6,0)代入得:b=3∴直線CF解析式:令3=,解得:,∴C(-2,4)∵A、C兩點坐標分別為A(-4,2)、C(-2,4)∴直線AC的表達式為,此時,P點坐標為P(0,6).點睛:本題是一次函數與反比例函數的綜合題,主要考查了用待定系數法求函數的解析式、一次函數與反比例函數的交點坐標,熟練運用一次函數及反比例函數的性質是解題的關鍵.21、1.【解析】

根據二次根式性質,零指數冪法則,絕對值的代數意義,以及特殊角的三角函數值依次計算后合并即可.【詳解】解:原式=1﹣1+3﹣4×=1.【點睛】本題考查實數的運算及特殊角三角形函數值.22、今年的總收入為220萬元,總支出為1萬元.【解析】試題分析:設去年總收入為x萬元,總支出為y萬元,根據利潤=收入-支出即可得出關于x、y的二元一次方程組,解之即可得出結論.試題解析:設去年的總收入為x萬元,總支出為y萬元.根據題意,得,解這個方程組,得,∴(1+10%)x=220,(1-20%)y=1.答:今年的總收入為220萬元,總支出為1萬元.23、【解析】

根據已知得該

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論