2024屆云南省昆明官渡區五校聯考中考數學仿真試卷含解析_第1頁
2024屆云南省昆明官渡區五校聯考中考數學仿真試卷含解析_第2頁
2024屆云南省昆明官渡區五校聯考中考數學仿真試卷含解析_第3頁
2024屆云南省昆明官渡區五校聯考中考數學仿真試卷含解析_第4頁
2024屆云南省昆明官渡區五校聯考中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆云南省昆明官渡區五校聯考中考數學仿真試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x62.如果將拋物線向下平移1個單位,那么所得新拋物線的表達式是A. B. C. D.3.如圖,直線y=kx+b與y軸交于點(0,3)、與x軸交于點(a,0),當a滿足-3≤a<0時,k的取值范圍是()A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥34.某公司有11名員工,他們所在部門及相應每人所創年利潤如下表所示,已知這11個數據的中位數為1.部門人數每人所創年利潤(單位:萬元)11938743這11名員工每人所創年利潤的眾數、平均數分別是A.10,1 B.7,8 C.1,6.1 D.1,65.如圖是某幾何體的三視圖及相關數據,則該幾何體的全面積是()A.15π B.24π C.20π D.10π6.如圖,已知點P是雙曲線y=上的一個動點,連結OP,若將線段OP繞點O逆時針旋轉90°得到線段OQ,則經過點Q的雙曲線的表達式為()A.y= B.y=﹣ C.y= D.y=﹣7.如圖,取一張長為、寬為的長方形紙片,將它對折兩次后得到一張小長方形紙片,若要使小長方形與原長方形相似,則原長方形紙片的邊應滿足的條件是()A. B. C. D.8.實數a,b,c在數軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c9.若代數式的值為零,則實數x的值為()A.x=0 B.x≠0 C.x=3 D.x≠310.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.11.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.12.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB∥CD,BE交CD于點D,CE⊥BE于點E,若∠B=34°,則∠C的大小為________度.14.某校為了解本校九年級學生足球訓練情況,隨機抽查該年級若干名學生進行測試,然后把測試結果分為4個等級:A、B、C、D,并將統計結果繪制成兩幅不完整的統計圖.該年級共有700人,估計該年級足球測試成績為D等的人數為_____人.15.在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數y=x的圖象被⊙P截得的弦AB的長為,則a的值是_____.16.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點D,點P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.17.計算(+)(-)的結果等于________.18.如圖,在梯形ABCD中,AD∥BC,∠A=90°,點E在邊AB上,AD=BE,AE=BC,由此可以知道△ADE旋轉后能與△BEC重合,那么旋轉中心是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據調查統計結果,繪制了不完整的統計圖.請結合統計圖,回答下列問題:(1)這次調查中,一共調查了多少名學生?(2)求出扇形統計圖中“B:跳繩”所對扇形的圓心角的度數,并補全條形圖;(3)若該校有2000名學生,請估計選擇“A:跑步”的學生約有多少人?20.(6分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統計,并繪制以下不完整的頻數分布表(圖11-1)和扇形統計圖(圖11-2),根據圖表中的信息解答下列問題:分組

分數段(分)

頻數

A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數和m的值;(2)直接學出該班學生的中考體育成績的中位數落在哪個分數段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現需從這3人中隨機選取2人到八年級進行經驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.21.(6分)已知拋物線,與軸交于兩點,與軸交于點,且拋物線的對稱軸為直線.(1)拋物線的表達式;(2)若拋物線與拋物線關于直線對稱,拋物線與軸交于點兩點(點在點左側),要使,求所有滿足條件的拋物線的表達式.22.(8分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內部一點,在拋物線上是否存在點B,使△MBF的周長最小?若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.23.(8分)如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.24.(10分)先化簡,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整數解.25.(10分)如圖1,在平面直角坐標系xOy中,拋物線y=ax2+bx﹣與x軸交于點A(1,0)和點B(﹣3,0).繞點A旋轉的直線l:y=kx+b1交拋物線于另一點D,交y軸于點C.(1)求拋物線的函數表達式;(2)當點D在第二象限且滿足CD=5AC時,求直線l的解析式;(3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標為4,點Q在拋物線上,當直線l與y軸的交點C位于y軸負半軸時,是否存在以點A,D,P,Q為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標;若不存在,請說明理由.26.(12分)解不等式組,并將它的解集在數軸上表示出來.27.(12分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】根據同底數冪的乘法,同底數冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.2、C【解析】

根據向下平移,縱坐標相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.3、C【解析】

解:把點(0,2)(a,0)代入y=kx+b,得b=2.則a=-3∵-3≤a<0,∴-3≤-3解得:k≥2.故選C.【點睛】本題考查一次函數與一元一次不等式,屬于綜合題,難度不大.4、D【解析】

根據中位數的定義即可求出x的值,然后根據眾數的定義和平均數公式計算即可.【詳解】解:這11個數據的中位數是第8個數據,且中位數為1,,則這11個數據為3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以這組數據的眾數為1萬元,平均數為萬元.故選:.【點睛】此題考查的是中位數、眾數和平均數,掌握中位數的定義、眾數的定義和平均數公式是解決此題的關鍵.5、B【解析】解:根據三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點睛:本題考查了圓錐的計算:圓錐的側面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.6、D【解析】

過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應邊相等及反比例函數k的幾何意義確定出所求即可.【詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設P(a,b),則有Q(-b,a),由點P在y=上,得到ab=3,可得-ab=-3,則點Q在y=-上.故選D.【點睛】此題考查了待定系數法求反比例函數解析式,反比例函數圖象上點的坐標特征,以及坐標與圖形變化,熟練掌握待定系數法是解本題的關鍵.7、B【解析】

由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,然后根據相似多邊形的定義,列出比例式即可求出結論.【詳解】解:由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,∵小長方形與原長方形相似,故選B.【點睛】此題考查的是相似三角形的性質,根據相似三角形的定義列比例式是解決此題的關鍵.8、A【解析】

根據數軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數與數軸,弄清數軸上點表示的數是解本題的關鍵.9、A【解析】

根據分子為零,且分母不為零解答即可.【詳解】解:∵代數式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.10、C【解析】

三粒均勻的正六面體骰子同時擲出共出現216種情況,而邊長能構成直角三角形的數字為3、4、5,含這三個數字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現數字的不同共=216種情況,其中數字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.11、A【解析】

根據應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.12、C【解析】如下圖,設⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、56【解析】

解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.14、1【解析】試題解析:∵總人數為14÷28%=50(人),∴該年級足球測試成績為D等的人數為(人).故答案為:1.15、2+【解析】

試題分析:過P點作PE⊥AB于E,過P點作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據勾股定理得:PE=1,∵點A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【點睛】本題主要考查的就是垂徑定理的應用以及直角三角形勾股定理的應用,屬于中等難度的題型.解決這個問題的關鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個條件的應用也是很重要的.16、6【解析】

根據等角對等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【點睛】此題考查等腰三角形的性質,直角三角形的性質,解題關鍵在于利用等腰三角形的“三線合一17、2【解析】

利用平方差公式進行計算即可得.【詳解】原式==5-3=2,故答案為:2.【點睛】本題考查了二次根式的混合運算,掌握平方差公式結構特征是解本題的關鍵.18、CD的中點【解析】

根據旋轉的性質,其中對應點到旋轉中心的距離相等,于是得到結論.【詳解】∵△ADE旋轉后能與△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D與E,E與C是對應頂點,∵CD的中點到D,E,C三點的距離相等,∴旋轉中心是CD的中點,故答案為:CD的中點.【點睛】本題考查了旋轉的性質,等腰直角三角形的性質,關鍵是明確旋轉中心的概念.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)一共調查了300名學生;(2)36°,補圖見解析;(3)估計選擇“A:跑步”的學生約有800人.【解析】

(1)由跑步的學生數除以占的百分比求出調查學生總數即可;(2)求出跳繩學生占的百分比,乘以360°求出占的圓心角度數,補全條形統計圖即可;(3)利用跑步占的百分比,乘以2000即可得到結果.【詳解】(1)根據題意得:120÷40%=300(名),則一共調查了300名學生;(2)根據題意得:跳繩學生數為300﹣(120+60+90)=30(名),則扇形統計圖中“B:跳繩”所對扇形的圓心角的度數為360°×=36°,;(3)根據題意得:2000×40%=800(人),則估計選擇“A:跑步”的學生約有800人.【點睛】此題考查了條形統計圖,扇形統計圖,以及用樣本估計總體,弄清題中的數據是解本題的關鍵.20、(1)50,18;(2)中位數落在51﹣56分數段;(3).【解析】

(1)利用C分數段所占比例以及其頻數求出總數即可,進而得出m的值;(2)利用中位數的定義得出中位數的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學生人數:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學生人數:50人,∴第25和第26個數據的平均數是中位數,∴中位數落在51﹣56分數段;(3)如圖所示:將男生分別標記為A1,A2,女生標記為B1

A1

A2

B1

A1

(A1,A2)

(A1,B1)

A2

(A2,A1)

(A2,B1)

B1

(B1,A1)

(B1,A2)

P(一男一女).【點睛】本題考查列表法與樹狀圖法,頻數(率)分布表,扇形統計圖,中位數.21、(1);(2).【解析】

(1)根據待定系數法即可求解;(2)根據題意知,根據三角形面積公式列方程即可求解.【詳解】(1)根據題意得:,解得:,拋物線的表達式為:;(2)∵拋物線與拋物線關于直線對稱,拋物線的對稱軸為直線∴拋物線的對稱軸為直線,∵拋物線與軸交于點兩點且點在點左側,∴的橫坐標為:∴,令,則,解得:,令,則,∴點的坐標分別為,,點的坐標為,∴,∵,∴,即,解得:或,∵拋物線與拋物線關于直線對稱,拋物線的對稱軸為直線,∴拋物線的表達式為或.【點睛】本題屬于二次函數綜合題,涉及了待定系數法求函數解析式、一元二次方程的解及三角形的面積,第(2)問的關鍵是得到拋物線的對稱軸為直線.22、(1);(2)①見解析;②;(3)存在點B,使△MBF的周長最小.△MBF周長的最小值為11,直線l的解析式為.【解析】

(1)用待定系數法將已知兩點的坐標代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉化為求證∠BFC=∠BCF,根據“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點D,設B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點的坐標,運用勾股定理表示出的長度,令,解關于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉化到一條直線上,再通過“兩點之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F,通過第(2)問的結論將△MBF的邊轉化為,可以發現,當點運動到位置時,△MBF周長取得最小值,根據求平面直角坐標系里任意兩點之間的距離的方法代入點與的坐標求出的長度,再加上即是△MBF周長的最小值;將點的橫坐標代入二次函數求出,再聯立與的坐標求出的解析式即可.【詳解】(1)解:將點(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點B作BD⊥y軸于點D,設B(m,),∵BC⊥x軸,BD⊥y軸,F(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說明:寫一個給1分)(3)存在點B,使△MBF的周長最小.過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長=MF+MB+BF=MF+MB+BE根據垂線段最短可知:MN<MB+BE∴當點B在點B1處時,△MBF的周長最小∵M(3,6),F(0,2)∴,MN=6∴△MBF周長的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時直線l的解析式為:.【點睛】本題綜合考查了二次函數與一次函數的圖象與性質,等腰三角形的性質,動點與最值問題等,熟練掌握各個知識點,結合圖象作出合理輔助線,進行適當的轉化是解答關鍵.23、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉換方式和弦長的計算方法.24、,1.【解析】

首先化簡(﹣a)÷(1+),然后根據a是不等式﹣<a<的整數解,求出a的值,再把求出的a的值代入化簡后的算式,求出算式的值是多少即可.【詳解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整數解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,當a=1時,原式==1.25、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當x=﹣2時,最大值為;(4)存在,點D的橫坐標為﹣3或或﹣.【解析】

(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【詳解】(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數的表達式為:①;(2)過點D作DF⊥x軸交于點F,過點E作y軸的平行線交直線AD于點M,∵OC∥DF,∴OF=5OA=5,故點D的坐標為(﹣5,6),將點A、D的坐標代入一次函數表達式:y=mx+n得:,解得:即直線AD的表達式為:y=﹣x+1,(3)設點E坐標為則點M坐標為則∵故S△ACE有最大值,當x=﹣2時,最大值為;(4)存在,理由:①當AP為平行四邊形的一條邊時,如下圖,設點D的坐標為將點A向左平移2個單位、向上平移4個單位到達點P的位置,同樣把點D左平移2個單位、向上平移4個單位到達點Q的位置,則點Q的坐標為將點Q的坐標代入①式并解得:②

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論