




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年上海市寶山區劉行新華實驗校中考猜題數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在中,,,,點在以斜邊為直徑的半圓上,點是的三等分點,當點沿著半圓,從點運動到點時,點運動的路徑長為()A.或 B.或 C.或 D.或2.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.3.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體4.如圖中任意畫一個點,落在黑色區域的概率是()A. B. C.π D.505.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的一個根,則這個三角形的周長是()A.9 B.11 C.13 D.11或136.下列說法中,正確的個數共有()(1)一個三角形只有一個外接圓;(2)圓既是軸對稱圖形,又是中心對稱圖形;(3)在同圓中,相等的圓心角所對的弧相等;(4)三角形的內心到該三角形三個頂點距離相等;A.1個B.2個C.3個D.4個7.已知二次函數y=3(x﹣1)2+k的圖象上有三點A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y18.下列各數中最小的是()A.0 B.1 C.﹣ D.﹣π9.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=10.按一定規律排列的一列數依次為:﹣,1,﹣,、﹣、…,按此規律,這列數中的第100個數是()A.﹣ B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,以AB為直徑的半圓沿弦BC折疊后,AB與相交于點D.若,則∠B=________°.12.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關于x的不等式x+1≥mx+n的解集為__________.13.化簡:x2-4x+4x14.如圖,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分線與AC交于點D,與AB交于點E,連接BD.若AD=14,則BC的長為_____.15.一次函數與的圖象如圖,則的解集是__.16.若有意義,則x的取值范圍是.17.計算:=_______.三、解答題(共7小題,滿分69分)18.(10分)先化簡代數式:,再代入一個你喜歡的數求值.19.(5分)某中學為了考察九年級學生的中考體育測試成績(滿分30分),隨機抽查了40名學生的成績(單位:分),得到如下的統計圖①和圖②.請根據相關信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數據的平均數、眾數和中位數:(3)根據樣本數據,估計該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生。20.(8分)如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發,以l的速度向運動(不與重合).設點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.21.(10分)一個不透明的口袋中裝有2個紅球、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.22.(10分)從化市某中學初三(1)班數學興趣小組為了解全校800名初三學生的“初中畢業選擇升學和就業”情況,特對本班50名同學們進行調查,根據全班同學提出的3個主要觀點:A高中,B中技,C就業,進行了調查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統計圖(如圖).請回答以下問題:(1)該班學生選擇觀點的人數最多,共有人,在扇形統計圖中,該觀點所在扇形區域的圓心角是度.(2)利用樣本估計該校初三學生選擇“中技”觀點的人數.(3)已知該班只有2位女同學選擇“就業”觀點,如果班主任從該觀點中,隨機選取2位同學進行調查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).23.(12分)如圖是某旅游景點的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個臺階的高超過15cm且不足22cm時,按一個臺階計算.可能用到的數據:≈1.414,≈1.732)24.(14分)八年級(1)班學生在完成課題學習“體質健康測試中的數據分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統計圖.請你根據上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據平行線的性質及圓周角定理的推論得出點M的軌跡是以EF為直徑的半圓,進而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當點D與B重合時,M與F重合,當點D與A重合時,M與E重合,連接BD,FM,AD,EM,∵∴∵AB是直徑即∴∴點M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點M運動的路徑長為當時,同理可得點M運動的路徑長為故選:A.【點睛】本題主要考查動點的運動軌跡,掌握圓周角定理的推論,平行線的性質和弧長公式是解題的關鍵.2、C【解析】
根據全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應邊應該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應關系是關鍵.3、C【解析】【分析】根據各幾何體的主視圖可能出現的情況進行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【點睛】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關鍵.4、B【解析】
抓住黑白面積相等,根據概率公式可求出概率.【詳解】因為,黑白區域面積相等,所以,點落在黑色區域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區域面積關系.5、C【解析】試題分析:先求出方程x2-6x+8=0的解,再根據三角形的三邊關系求解即可.解方程x2-6x+8=0得x=2或x=4當x=2時,三邊長為2、3、6,而2+3<6,此時無法構成三角形當x=4時,三邊長為4、3、6,此時可以構成三角形,周長=4+3+6=13故選C.考點:解一元二次方程,三角形的三邊關系點評:解題的關鍵是熟記三角形的三邊關系:任兩邊之和大于第三邊,任兩邊之差小于第三邊.6、C【解析】
根據外接圓的性質,圓的對稱性,三角形的內心以及圓周角定理即可解出.【詳解】(1)一個三角形只有一個外接圓,正確;(2)圓既是軸對稱圖形,又是中心對稱圖形,正確;(3)在同圓中,相等的圓心角所對的弧相等,正確;(4)三角形的內心是三個內角平分線的交點,到三邊的距離相等,錯誤;故選:C.【點睛】此題考查了外接圓的性質,三角形的內心及軸對稱和中心對稱的概念,要求學生對這些概念熟練掌握.7、D【解析】試題分析:根據二次函數的解析式y=3(x-1)2+k,可知函數的開口向上,對稱軸為x=1,根據函數圖像的對稱性,可得這三點的函數值的大小為y3>y2>y1.故選D點睛:此題主要考查了二次函數的圖像與性質,解題時先根據頂點式求出開口方向,和對稱軸,然后根據函數的增減性比較即可,這是中考??碱},難度有點偏大,注意結合圖形判斷驗證.8、D【解析】
根據任意兩個實數都可以比較大?。龑崝刀即笥?,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數是﹣π.故選:D.【點睛】本題考查了實數大小的比較,理解任意兩個實數都可以比較大?。龑崝刀即笥?,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小是關鍵.9、D【解析】
各項中每項計算得到結果,即可作出判斷.【詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.【點睛】此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.10、C【解析】
根據按一定規律排列的一列數依次為:,1,,,,…,可知符號規律為奇數項為負,偶數項為正;分母為3、7、9、……,型;分子為型,可得第100個數為.【詳解】按一定規律排列的一列數依次為:,1,,,,…,按此規律,奇數項為負,偶數項為正,分母為3、7、9、……,型;分子為型,可得第n個數為,∴當時,這個數為,故選:C.【點睛】本題屬于規律題,準確找出題目的規律并將特殊規律轉化為一般規律是解決本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、18°【解析】
由折疊的性質可得∠ABC=∠CBD,根據在同圓和等圓中,相等的圓周角所對的弧相等可得,再由和半圓的弧度為180°可得的度數×5=180°,即可求得的度數為36°,再由同弧所對的圓周角的度數為其弧度的一半可得∠B=18°.【詳解】解:由折疊的性質可得∠ABC=∠CBD,∴,∵,∴的度數+的度數+的度數=180°,即的度數×5=180°,∴的度數為36°,∴∠B=18°.故答案為:18.【點睛】本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.還考查了圓弧的度數與圓周角之間的關系.12、x≥1【解析】
把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據圖象可以知道當x≥1時,y=x+1的函數值不小于y=mx+n相應的函數值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點睛】本題考查了一次函數與不等式(組)的關系及數形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數形結合.13、﹣x-2x【解析】
直接利用分式的混合運算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.14、1【解析】解:∵DE是AB的垂直平分線,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案為1.點睛:本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,30°角所對的直角邊等于斜邊的一半的性質,熟記性質是解答本題的關鍵.15、【解析】
不等式kx+b-(x+a)>0的解集是一次函數y1=kx+b在y2=x+a的圖象上方的部分對應的x的取值范圍,據此即可解答.【詳解】解:不等式的解集是.故答案為:.【點睛】本題考查了一次函數的圖象與一元一次不等式的關系:從函數的角度看,就是尋求使一次函數y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.16、x≥8【解析】略17、3【解析】
先把化成,然后再合并同類二次根式即可得解.【詳解】原式=2.故答案為【點睛】本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行然后合并同類二次根式.三、解答題(共7小題,滿分69分)18、【解析】
先根據分式的運算法則進行化簡,再代入使分式有意義的值計算.【詳解】解:原式.使原分式有意義的值可取2,當時,原式.【點睛】考核知識點:分式的化簡求值.掌握分式的運算法則是關鍵.19、(1)25;(2)平均數:28.15,所以眾數是28,中位數為28,(3)體育測試成績得滿分的大約有300名學生.【解析】
(1)根據統計圖中的數據可以求得m的值;
(2)根據條形統計圖中的數據可以計算出平均數,得到眾數和中位數;
(3)根據樣本中得滿分所占的百分比,可以求得該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生.【詳解】解:(1),∴m的值為25;(2)平均數:,因為在這組樣本數據中,28出現了12次,出現的次數最多,所以眾數是28;因為將這組樣本數據按從小到大的順序排列,其中處于中間的兩個數都是28,所以這組樣本數據的中位數為28;(3)×2000=300(名)∴估計該中學九年級2000名學生中,體育測試成績得滿分的大約有300名學生.【點睛】本題考查條形統計圖、用樣本估計總體、加權平均數、中位數、眾數,解答本題的關鍵是明確它們各自的計算方法.20、(1)證明見解析;(2)PD=8-t,運動時間為秒時,四邊形PBQD是菱形.【解析】
(1)先根據四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據O為BD的中點得出△POD≌△QOB,即可證得OP=OQ;(2)根據已知條件得出∠A的度數,再根據AD=8cm,AB=6cm,得出BD和OD的長,再根據四邊形PBQD是菱形時,利用勾股定理即可求出t的值,判斷出四邊形PBQD是菱形.【詳解】(1)∵四邊形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,又∵O為BD的中點,∴OB=OD,在△POD與△QOB中,,∴△POD≌△QOB,∴OP=OQ;(2)PD=8-t,∵四邊形PBQD是菱形,∴BP=PD=8-t,∵四邊形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=,即運動時間為秒時,四邊形PBQD是菱形.【點睛】本題考查了矩形的性質,菱形的性質,全等三角形的判定與性質,勾股定理等,熟練掌握相關知識是解題關鍵.注意數形結合思想的運用.21、【解析】分析:列表得出所有等可能的情況數,找出兩次都摸到紅球的情況數,即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.22、(4)A高中觀點.4.446;(4)456人;(4)16【解析】試題分析:(4)全班人數乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數,用460°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區域的圓心角的度數;(4)用全校初三年級學生數乘以選擇“B中技”觀點的百分比即可估計該校初三學生選擇“中技”觀點的人數;(4)先計算出該班選擇“就業”觀點的人數為4人,則可判斷有4位女同學和4位男生選擇“就業”觀點,再列表展示44種等可能的結果數,找出出現4女的結果數,然后根據概率公式求解.試題解析:(4)該班學生選擇A高中觀點的人數最多,共有60%×50=4(人),在扇形統計圖中,該觀點所在扇形區域的圓心角是60%×460°=446°;(4)∵800×44%
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CPMA 033-2023成人慢性病行為危險因素監測基本數據集標準
- T/CNIDA 014-2023核電建設項目監理人員配置標準
- T/CMRA 06-2019鋁框塑料模板
- T/CMA HG029-2021輪胎雪地抓著性能測試道路制作及道路驗收和維護
- T/CIQA 2-2019檢驗鑒定從業人員行為規范
- T/CIES 016-2018電視演播室燈光系統運行維護標準
- T/CI 243-2023高層裝配式鋼結構建筑施工技術規程
- T/CHIA 28.1-2022兒童營養與健康評價指標第1部分:0~23月齡
- T/CGAS 025-2023城鎮燃氣系統智能化評價規范
- T/CECS 10127-2021燃氣燃燒器具用風機
- 2025-2030年中國威士忌酒行業運行動態及前景趨勢預測報告
- 小學生記憶小竅門課件
- 婚姻家庭與法律知到智慧樹章節測試課后答案2024年秋延邊大學
- 《傷寒論》課件-少陽病提綱、小柴胡湯證
- 高速鐵路客運服務基礎知識單選題100道及答案
- 2024商鋪租賃合同解除補償承諾書11篇
- 科室病歷質量管理培訓記錄
- 新興行業審計風險分析-洞察分析
- 體育行業在線體育服務平臺建設方案
- 玩具無人機產業深度調研及未來發展現狀趨勢
- DB43-T 3080.10-2024 湖南省立木材積、生物量及碳系數計量監測系列模型 第10部分:林木和林分生長率模型
評論
0/150
提交評論