




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.82.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.3.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)4.()A. B. C. D.5.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.6.已知函數(shù),若,則下列不等關(guān)系正確的是()A. B.C. D.7.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.8.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件9.已知函數(shù),若,則的取值范圍是()A. B. C. D.10.已知數(shù)列滿足,(),則數(shù)列的通項(xiàng)公式()A. B. C. D.11.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.12.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.14.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________15.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.16.在某批次的某種燈泡中,隨機(jī)抽取200個(gè)樣品.并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計(jì)2001某人從燈泡樣品中隨機(jī)地購買了個(gè),如果這個(gè)燈泡的壽命情況恰好與按四個(gè)組分層抽樣所得的結(jié)果相同,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域.(2)設(shè)函數(shù),若,且的最小值為,求實(shí)數(shù)的取值范圍.18.(12分)在某外國(guó)語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng).按女生、男生用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過的前提下能否認(rèn)為“獲獎(jiǎng)與女生、男生有關(guān)”.女生男生總計(jì)獲獎(jiǎng)不獲獎(jiǎng)總計(jì)附表及公式:其中,.19.(12分)如圖,在直角梯形中,,,,為的中點(diǎn),沿將折起,使得點(diǎn)到點(diǎn)位置,且,為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說明理由.20.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;(3)在第(2)問的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;21.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實(shí)數(shù)取何值,直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)若直線經(jīng)過點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù)并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D【點(diǎn)睛】本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.2、B【解析】
由三視圖判斷出原圖,將幾何體補(bǔ)形為長(zhǎng)方體,由此計(jì)算出幾何體外接球的直徑,進(jìn)而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個(gè)底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長(zhǎng)為2且與底面垂直,因?yàn)橹比庵梢詮?fù)原成一個(gè)長(zhǎng)方體,該長(zhǎng)方體外接球就是該三棱柱的外接球,長(zhǎng)方體對(duì)角線就是外接球直徑,則,那么.故選:B【點(diǎn)睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計(jì)算,屬于基礎(chǔ)題.3、C【解析】
根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對(duì)題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.4、D【解析】
利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡(jiǎn),可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.5、D【解析】
與中間值1比較,可用換底公式化為同底數(shù)對(duì)數(shù),再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點(diǎn)睛】本題考查冪和對(duì)數(shù)的大小比較,解題時(shí)能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對(duì)數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.6、B【解析】
利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【詳解】∵在R上單調(diào)遞增,且,∴.∵的符號(hào)無法判斷,故與,與的大小不確定,對(duì)A,當(dāng)時(shí),,故A錯(cuò)誤;對(duì)C,當(dāng)時(shí),,故C錯(cuò)誤;對(duì)D,當(dāng)時(shí),,故D錯(cuò)誤;對(duì)B,對(duì),則,故B正確.故選:B.【點(diǎn)睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運(yùn)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,屬于基礎(chǔ)題.7、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.8、A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力.9、B【解析】
對(duì)分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.10、A【解析】
利用數(shù)列的遞推關(guān)系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項(xiàng)公式的求法,考查計(jì)算能力.11、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)椋杂校菏欠匠痰亩?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.12、B【解析】
由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對(duì)應(yīng)正弦曲線中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識(shí);考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運(yùn)算能力,屬于基礎(chǔ)題.14、1【解析】
令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點(diǎn)睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時(shí),最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.16、10【解析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個(gè),第二組有60個(gè),第三組有80個(gè),第四組有20個(gè),所以四個(gè)組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點(diǎn)睛】本題考查分層抽樣基本原理的應(yīng)用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)令,求出的范圍,再由指數(shù)函數(shù)的單調(diào)性,即可求出結(jié)論;(2)對(duì)分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關(guān)系,求出的值,進(jìn)而求出的取值關(guān)系.【詳解】(1)當(dāng)時(shí),,令,∵∴,而是增函數(shù),∴,∴函數(shù)的值域是.(2)當(dāng)時(shí),則在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,在上單調(diào)遞增,最小值為,而的最小值為,所以這種情況不可能.當(dāng)時(shí),則在上單調(diào)遞減且沒有最小值,在上單調(diào)遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查復(fù)合函數(shù)的值域與分段函數(shù)的最值,熟練掌握二次函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.18、(Ⅰ),;(Ⅱ)詳見解析.【解析】
(Ⅰ)根據(jù)概率的性質(zhì)知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎(jiǎng)的人數(shù)為,不獲獎(jiǎng)的人數(shù)為,從而可得列聯(lián)表,再計(jì)算出,與臨界值比較可得.【詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎(jiǎng)的人數(shù)為,不獲獎(jiǎng)的人數(shù)為,列聯(lián)表如下:女生男生總計(jì)獲獎(jiǎng)不獲獎(jiǎng)總計(jì)因?yàn)?所以在犯錯(cuò)誤的概率不超過的前提下能認(rèn)為“獲獎(jiǎng)與女生,男生有關(guān).”【點(diǎn)睛】本題主要考查獨(dú)立性檢驗(yàn),以及由頻率分布直方圖求平均數(shù)的問題,熟記獨(dú)立性檢驗(yàn)的思想,以及平均數(shù)的計(jì)算方法即可,屬于常考題型.19、(Ⅰ)見解析(Ⅱ)存在,此時(shí)為的中點(diǎn).【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設(shè)存在點(diǎn)滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設(shè),,計(jì)算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設(shè)存在點(diǎn)滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設(shè),則,在中,設(shè)(),由得,即,得,∴,依題意知,即,解得,此時(shí)為的中點(diǎn).綜上知,存在點(diǎn),使得二面角的余弦值,此時(shí)為的中點(diǎn).【點(diǎn)睛】本題考查了面面垂直,根據(jù)二面角確定點(diǎn)的位置,意在考查學(xué)生的空間想象能力和計(jì)算能力,也可以建立空間直角坐標(biāo)系解得答案.20、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí),,所以,④……當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇數(shù)時(shí),,所以,當(dāng)n為奇數(shù)時(shí),.解法二:猜測(cè):當(dāng)n為奇數(shù)時(shí),.猜測(cè):當(dāng)n為偶數(shù)時(shí),.以下用數(shù)學(xué)歸納法證明:,命題成立;假設(shè)當(dāng)時(shí),命題成立;當(dāng)n為奇數(shù)時(shí),,當(dāng)時(shí),n為偶數(shù),由得故,時(shí),命題也成立.綜上可知,當(dāng)n為奇數(shù)時(shí)同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.(3)由(2)可知.①當(dāng)n為偶數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- DB21-T1897-2021-丹東栗栽培技術(shù)規(guī)程-遼寧省
- 2025至2031年中國(guó)卷管機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國(guó)單戶型家庭自來水裝置行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025中國(guó)稀土集團(tuán)有限公司社會(huì)招聘65人筆試參考題庫附帶答案詳解
- DB13-T5001-2019-信息安全技術(shù)信息系統(tǒng)個(gè)人信息保護(hù)技術(shù)與管理規(guī)范-河北省
- 出版社圖書出版合同范文(5篇)
- 節(jié)慶綠化布置合同
- 2025年中國(guó)絨沙金工藝品-千手觀音市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)磁性智力建筑市場(chǎng)調(diào)查研究報(bào)告
- 云原生環(huán)境下的CI挑戰(zhàn)-全面剖析
- 集體備課培訓(xùn)講座
- 危廢處置方案
- 2025年全國(guó)會(huì)展策劃師崗位職業(yè)技能資格知識(shí)考試題庫與答案
- 貴州省考試院2025年4月高三年級(jí)適應(yīng)性考試歷史試題及答案
- 兒童暴發(fā)性心肌炎診治專家建議(2025)解讀課件
- GB/T 320-2025工業(yè)用合成鹽酸
- 企業(yè)危險(xiǎn)源辨識(shí)與風(fēng)險(xiǎn)評(píng)估降低風(fēng)險(xiǎn)措施清單
- 天鵝藝術(shù)漆施工方案
- 腦卒中患者口腔健康素養(yǎng)的研究進(jìn)展
- 廣東省廣州市白云區(qū)2024-2025學(xué)年高三下學(xué)期2月統(tǒng)測(cè)英語試卷(含答案)
- 2025至2030年中國(guó)煤氣渣數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
評(píng)論
0/150
提交評(píng)論