




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B. C. D.2.點為棱長是2的正方體的內切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.3.從集合中隨機選取一個數記為,從集合中隨機選取一個數記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.4.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q5.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.6.函數的大致圖象是()A. B.C. D.7.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.8.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.69.將函數的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,若為奇函數,則的最小值為()A. B. C. D.10.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,越小,模型的擬合效果越好;③若數據的方差為1,則的方差為4;④已知一組具有線性相關關系的數據,其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數為()A.4 B.3 C.2 D.111.定義在上的函數與其導函數的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數的單調遞減區間是()A. B. C. D.12.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.某班有學生52人,現將所有學生隨機編號,用系統抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.14.執行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.15.滿足線性的約束條件的目標函數的最大值為________16.設,分別是定義在上的奇函數和偶函數,且,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.(1)請根據上述表格中的統計數據填寫下面列聯表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發言,記這人中女生的人數為,求的分布列和數學期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63518.(12分)已知是遞增的等比數列,,且、、成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,,求數列的前項和.19.(12分)已知函數,的最大值為.求實數b的值;當時,討論函數的單調性;當時,令,是否存在區間,,使得函數在區間上的值域為?若存在,求實數k的取值范圍;若不存在,請說明理由.20.(12分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數的分布列和數學期望.21.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數記錄結果中隨機抽取10天的數據,整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規定每件0.65元,乙公司規定每天350件以內(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據題中數據寫出甲公司員工在這10天投遞的快件個數的平均數和眾數;(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數學期望;(3)根據題中數據估算兩公司被抽取員工在該月所得的勞務費.22.(10分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.2、C【解析】
設的中點為,利用正方形和正方體的性質,結合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內切球的交線.正方體的棱長為2,所以內切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應用,考查了立體幾何中軌跡問題,考查了球截面的性質,考查了空間想象能力和數學運算能力.3、A【解析】
設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.4、C【解析】
解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C5、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.6、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數圖象,屬基礎題.7、A【解析】
由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.8、B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.9、C【解析】
根據三角函數的變換規則表示出,根據是奇函數,可得的取值,再求其最小值.【詳解】解:由題意知,將函數的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,,因為是奇函數,所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數的變換以及三角函數的性質,屬于基礎題.10、C【解析】
①根據線性相關性與r的關系進行判斷,
②根據相關指數的值的性質進行判斷,
③根據方差關系進行判斷,
④根據點滿足回歸直線方程,但點不一定就是這一組數據的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關性越強,則相關系數r的絕對值越接近于1,故①正確;
②用相關指數的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;
③若統計數據的方差為1,則的方差為,故③正確;
④因為點滿足回歸直線方程,但點不一定就是這一組數據的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;
所以正確的命題有①③.
故選:C.【點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.11、B【解析】
先辨別出圖象中實線部分為函數的圖象,虛線部分為其導函數的圖象,求出函數的導數為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數的圖象,則該函數只有一個極值點,但其導函數圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數的圖象,則該函數有兩個極值點,則其導函數圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數的單調遞減區間為.故選:B.【點睛】本題考查利用圖象求函數的單調區間,同時也考查了利用圖象辨別函數與其導函數的圖象,考查推理能力,屬于中等題.12、C【解析】
根據題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.
答案:C【點睛】本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最小);三相等是最后一定要驗證等號能否成立,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】
根據系統抽樣的定義和方法,所抽取的4個個體的編號成等差數列,故可根據其中三個個體的編號求出另一個個體的編號.【詳解】解:根據系統抽樣的定義和方法,所抽取的4個個體的編號成等差數列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點睛】本題主要考查系統抽樣的定義和方法,屬于簡單題.14、8【解析】
根據偽代碼逆向運算求得結果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結果:【點睛】本題考查算法中的語言,屬于基礎題.15、1【解析】
作出不等式組表示的平面區域,將直線進行平移,利用的幾何意義,可求出目標函數的最大值。【詳解】由,得,作出可行域,如圖所示:平移直線,由圖像知,當直線經過點時,截距最小,此時取得最大值。由,解得,代入直線,得。【點睛】本題主要考查簡單的線性規劃問題的解法——平移法。16、1【解析】
令,結合函數的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數分別是上的奇函數和偶函數,且,令,可得,所以.故答案為:1.【點睛】本題主要考查了函數奇偶性的應用,其中解答中熟記函數的奇偶性,合理賦值求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析.【解析】
(1)根據所給數據可完成列聯表.由總人數及女生人數得男生人數,由表格得達標人數,從而得男生中達標人數,這樣不達標人數隨之而得,然后計算可得結論;(2)由達標人數中男女生人數比為可得抽取的人數,總共選2人,女生有4人,的可能值為0,1,2,分別計算概率得分布列,再由期望公式可計算出期望.【詳解】(1)列出列聯表,,所以在犯錯誤的概率不超過的前提下能判斷“課外體育達標”與性別有關.(2)(i)在“鍛煉達標”的學生中,男女生人數比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會交流的人中,隨機選出人發言,人中女生的人數為,則的可能值為,,,則,,,可得的分布列為:可得數學期望.【點睛】本題考查列聯表與獨立性檢驗,考查分層抽樣,隨機變量的概率分布列和期望.主要考查學生的數據處理能力,運算求解能力,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)設等比數列的公比為,根據題中條件求出的值,結合等比數列的通項公式可得出數列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設數列的公比為,由題意及,知.、、成等差數列成等差數列,,,即,解得或(舍去),.數列的通項公式為;(Ⅱ),.【點睛】本題考查等比數列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎題.19、(1);(2)時,在單調增;時,在單調遞減,在單調遞增;時,同理在單調遞減,在單調遞增;(3)不存在.【解析】分析:(1)利用導數研究函數的單調性,可得當時,取得極大值,也是最大值,由,可得結果;(2)求出,分三種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數增區間,求得的范圍,可得函數的減區間;(3)假設存在區間,使得函數在區間上的值域是,則,問題轉化為關于的方程在區間內是否存在兩個不相等的實根,進而可得結果.詳解:(1)由題意得,令,解得,當時,,函數單調遞增;當時,,函數單調遞減.所以當時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調增②若,而,故,則當時,;當及時,故在單調遞減,在單調遞增.③若,即,同理在單調遞減,在單調遞增(3)由(1)知,所以,令,則對恒成立,所以在區間內單調遞增,所以恒成立,所以函數在區間內單調遞增.假設存在區間,使得函數在區間上的值域是,則,問題轉化為關于的方程在區間內是否存在兩個不相等的實根,即方程在區間內是否存在兩個不相等的實根,令,,則,設,,則對恒成立,所以函數在區間內單調遞增,故恒成立,所以,所以函數在區間內單調遞增,所以方程在區間內不存在兩個不相等的實根.綜上所述,不存在區間,使得函數在區間上的值域是.點睛:本題主要考查利用導數判斷函數的單調性以及函數的最值值,屬于難題.求函數極值、最值的步驟:(1)確定函數的定義域;(2)求導數;(3)解方程求出函數定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區間上的最值還需要比較端點值的函數值與極值的大小.20、(1)乙同學正確(2)分布列見解析,【解析】
(1)由已知可得甲不正確,求出樣本中心點代入驗證,即可得出結論;(2)根據(1)中得到的回歸方程,求出估值,得到“理想數據”的個數,確定“理想數據”的個數的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數據如下表:“理想數據”有3個,故“理想數據”的個數的取值為:.,,于是“理想數據”的個數的分布列【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 籃球球場整修方案范本
- 河道清淤采砂施工方案
- 重慶科技學院《大學英語Ⅲ》2023-2024學年第二學期期末試卷
- 水泥構件銷售方案范本
- 鎮江市高等專科學校《中學數學現代教育技術》2023-2024學年第二學期期末試卷
- 山東藝術學院《實證會計研究入門》2023-2024學年第二學期期末試卷
- 寧波大學科學技術學院《藥劑學Ⅱ》2023-2024學年第二學期期末試卷
- 廊坊師范學院《植物生殖生物學》2023-2024學年第二學期期末試卷
- 中南林業科技大學《葡萄與葡萄酒》2023-2024學年第二學期期末試卷
- 江蘇衛生健康職業學院《制圖》2023-2024學年第二學期期末試卷
- PRS-778S500-100-090721技術使用說明書
- 求一個數比另一個數多幾少幾應用題
- 公路工程全過程跟蹤審計服務方案
- 華南師范大學論文論文封面
- 五年級冀教版英語下冊按要求寫句子專項習題
- 中英文驗貨報告模板
- 人教版高二英語試卷、答案(共5頁)
- 關于加強施工現場安全防護用具檢測的要求
- 2006東風雪鐵龍凱旋原廠維修手冊電器電路圖06年10月
- ERP系統編碼規則0002
- 學校安全工作記錄表
評論
0/150
提交評論