




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆陜西省西安市育才中學(xué)高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量,若,則()A.1 B. C.2 D.32.已知是所在平面內(nèi)一點(diǎn),且滿足,則為A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形3.我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問(wèn)題:“今有垣厚十尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問(wèn)幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=()A.2 B.3 C.4 D.54.過(guò)正方形的頂點(diǎn),作平面,若,則平面和平面所成的銳二面角的大小是A. B.C. D.5.設(shè)向量,,若三點(diǎn)共線,則()A. B. C. D.26.正項(xiàng)等比數(shù)列的前項(xiàng)和為,若,,則公比()A.4 B.3 C.2 D.17.已知數(shù)列、、、、,可猜想此數(shù)列的通項(xiàng)公式是().A. B.C. D.8.在中,,,,是外接圓上一動(dòng)點(diǎn),若,則的最大值是()A.1 B. C. D.29.方程的解集為()A.B.C.D.10.若,,,,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,內(nèi)角,,所對(duì)的邊分別為,,,,且,則面積的最大值為_(kāi)_____.12.方程,的解集是__________.13.的內(nèi)角的對(duì)邊分別為,若,,,則的面積為_(kāi)_________.14.函數(shù)的最小正周期為_(kāi)______.15.若函數(shù)的圖象與直線恰有兩個(gè)不同交點(diǎn),則的取值范圍是________.16.若直線上存在滿足以下條件的點(diǎn):過(guò)點(diǎn)作圓的兩條切線(切點(diǎn)分別為),四邊形的面積等于,則實(shí)數(shù)的取值范圍是_______三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖為某區(qū)域部分交通線路圖,其中直線,直線l與、、都垂直,垂足分別是點(diǎn)A、點(diǎn)B和點(diǎn)C(高速線右側(cè)邊緣),直線與、與的距離分別為1米、2千米,點(diǎn)M和點(diǎn)N分別在直線和上,滿足,記.(1)若,求AM的長(zhǎng)度;(2)記的面積為,求的表達(dá)式,并問(wèn)為何值時(shí),有最小值,并求出最小值;(3)求的取值范圍.18.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.(1)求證:AD⊥平面BFED;(2)點(diǎn)P在線段EF上運(yùn)動(dòng),設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.19.設(shè)是一個(gè)公比為q的等比數(shù)列,且,,成等差數(shù)列.(1)求q;(2)若數(shù)列前4項(xiàng)的和,令(),求數(shù)列的前n項(xiàng)和.20.如圖,在五面體ABCDEF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn),面CDE是等邊三角形,棱.(1)證明FO∥平面CDE;(2)設(shè)BC=CD,證明EO⊥平面CDE.21.如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個(gè)出入口設(shè)置在點(diǎn)及點(diǎn)處,且小區(qū)里有一條平行于的小路.(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(zhǎng)(精確到米)(2)若該扇形的半徑為,已知某老人散步,從沿走到,再?gòu)难刈叩剑嚧_定的位置,使老人散步路線最長(zhǎng).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
可求出,根據(jù)即可得出,進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算即可求出x.【詳解】;∵;∴;解得.故選B.【點(diǎn)睛】本題考查向量垂直的充要條件,向量坐標(biāo)的減法和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.2、B【解析】
由向量的減法法則,將題中等式化簡(jiǎn)得,進(jìn)而得到,由此可得以為鄰邊的平行四邊形為矩形,得的形狀是直角三角形。【詳解】因?yàn)椋驗(yàn)椋裕驗(yàn)椋裕纱丝傻靡詾猷忂叺钠叫兴倪呅螢榫匦危裕玫男螤钍侵苯侨切巍!军c(diǎn)睛】本題給出向量等式,判斷三角形的形狀,著重考查平面向量的加法、減法法則和三角形的形狀判斷等知識(shí)。3、C【解析】開(kāi)始,輸入,則,判斷,否,循環(huán),,則,判斷,否,循環(huán),則,判斷,否,循環(huán),則,判斷,是,輸出,結(jié)束.故選擇C.4、B【解析】法一:建立如圖(1)所示的空間直角坐標(biāo)系,不難求出平面APB與平面PCD的法向量分別為n1=(0,1,0),n2=(0,1,1),故平面ABP與平面CDP所成二面角的余弦值為=,故所求的二面角的大小是45°.法二:將其補(bǔ)成正方體.如圖(2),不難發(fā)現(xiàn)平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小為45°.5、A【解析】
利用向量共線的坐標(biāo)表示可得,解方程即可.【詳解】三點(diǎn)共線,,又,,,解得.故選:A【點(diǎn)睛】本題考查了向量共線的坐標(biāo)表示,需掌握向量共線,坐標(biāo)滿足:,屬于基礎(chǔ)題.6、C【解析】
由及等比數(shù)列的通項(xiàng)公式列出關(guān)于q的方程即可得求解.【詳解】,即有,解得或,又為正項(xiàng)等比數(shù)列,故選:C【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和,屬于基礎(chǔ)題.7、D【解析】
利用賦值法逐項(xiàng)排除可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),,不合乎題意;對(duì)于B選項(xiàng),,不合乎題意;對(duì)于C選項(xiàng),,不合乎題意;對(duì)于D選項(xiàng),當(dāng)為奇數(shù)時(shí),,此時(shí),當(dāng)為偶數(shù)時(shí),,此時(shí),合乎題意.故選:D.【點(diǎn)睛】本題考查利用觀察法求數(shù)列的通項(xiàng),考查推理能力,屬于中等題.8、C【解析】
以的中點(diǎn)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,設(shè)M的坐標(biāo)為,,求出點(diǎn)的坐標(biāo),得到,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出答案.【詳解】以的中點(diǎn)O為原點(diǎn),以為x軸,建立如圖所示的平面直角坐標(biāo)系,則外接圓的方程為,設(shè)M的坐標(biāo)為,,過(guò)點(diǎn)作垂直軸,,,,,,,,,,,,,,,,,,,,,,,其中,,當(dāng)時(shí),有最大值,最大值為,故選C.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算和向量的數(shù)乘運(yùn)算和正弦函數(shù)的圖象和性質(zhì),以及直角三角形的問(wèn)題,考查了學(xué)生的分析解決問(wèn)題的能力,屬于難題.9、C【解析】
利用反三角函數(shù)的定義以及正切函數(shù)的周期為,即可得到原方程的解.【詳解】由,根據(jù)正切函數(shù)圖像以及周期可知:,故選:C【點(diǎn)睛】本題考查了反三角函數(shù)的定義以及正切函數(shù)的性質(zhì),需熟記正切函數(shù)的圖像與性質(zhì),屬于基礎(chǔ)題.10、C【解析】
利用同角三角函數(shù)的基本關(guān)系求出與,然后利用兩角差的余弦公式求出值.【詳解】,,則,,則,所以,,因此,,故選C.【點(diǎn)睛】本題考查利用兩角和的余弦公式求值,解決這類(lèi)求值問(wèn)題需要注意以下兩點(diǎn):①利用同角三角平方關(guān)系求值時(shí),要求對(duì)象角的范圍,確定所求值的正負(fù);②利用已知角來(lái)配湊未知角,然后利用合適的公式求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)正弦定理將轉(zhuǎn)化為,即,由余弦定理得,再用基本不等式法求得,根據(jù)面積公式求解.【詳解】根據(jù)正弦定理可轉(zhuǎn)化為,化簡(jiǎn)得由余弦定理得因?yàn)樗裕?dāng)且僅當(dāng)時(shí)取所以則面積的最大值為.故答案為:【點(diǎn)睛】本題主要考查正弦定理,余弦定理,基本不等式的綜合應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.12、【解析】
用正弦的二倍角公式展開(kāi),得到,分兩種情況討論得出結(jié)果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點(diǎn)睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.13、【解析】
由已知及正弦定理可得:,進(jìn)而利用余弦定理即可求得a的值,進(jìn)而可求c,利用三角形的面積公式即可求解.【詳解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案為:.【點(diǎn)睛】本題注意考查余弦定理與正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.14、【解析】
將三角函數(shù)進(jìn)行降次,然后通過(guò)輔助角公式化為一個(gè)名稱(chēng),最后利用周期公式得到結(jié)果.【詳解】,.【點(diǎn)睛】本題主要考查二倍角公式,及輔助角公式,周期的運(yùn)算,難度不大.15、【解析】
作出函數(shù)的圖像,根據(jù)圖像可得答案.【詳解】因?yàn)椋裕裕裕鞒龊瘮?shù)的圖像,由圖可知故答案為:【點(diǎn)睛】本題考查了正弦型函數(shù)的圖像,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.16、【解析】
通過(guò)畫(huà)出圖形,可計(jì)算出圓心到直線的最短距離,建立不等式即可得到的取值范圍.【詳解】作出圖形,由題意可知,,此時(shí),四邊形即為,而,故,勾股定理可知,而要是得存在點(diǎn)P滿足該條件,只需O到直線的距離不大于即可,即,所以,故的取值范圍是.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,意在考查學(xué)生的轉(zhuǎn)化能力,計(jì)算能力,分析能力,難度中等.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2),當(dāng)時(shí),;(3).【解析】
(1),,,由即可得解;(2)用含有的式子表示出和,得出,根據(jù)的范圍得出的最小值;(3)用含有的式子表示出,利用三角恒等變換和正弦函數(shù)的值域得出答案.【詳解】(1)由題意可知:,即,,所以;(2),,,,,,,時(shí),取得最大值1,;(3),由題意可知,令,.【點(diǎn)睛】本題考查三角函數(shù)的綜合應(yīng)用,考查邏輯思維能力和計(jì)算能力,考查對(duì)基本知識(shí)的掌握,考查分析能力,屬于中檔題.18、(1)證明見(jiàn)解析(2)θ最小值為60°【解析】
(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再結(jié)合面面垂直的判定,證得DE⊥平面ABCD,即可證得AD⊥平面BFED;(2)以D為原點(diǎn),直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,求得平面PAB與平面ADE法向量,利用向量的夾角公式,即可求解。【詳解】(1)證明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE?平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直線AD,BD,ED兩兩垂直,故以D為原點(diǎn),直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,令EP=λ(0≤λ≤),則D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).設(shè)n1=(x,y,z)為平面PAB的法向量,由得,取y=1,則n1=(,1,-λ).因?yàn)閚2=(0,1,0)是平面ADE的一個(gè)法向量,所以cosθ===.因?yàn)?≤λ≤,所以當(dāng)λ=時(shí),cosθ有最大值,所以θ的最小值為60°.【點(diǎn)睛】本題考查了線面垂直關(guān)系的判定與證明,以及空間角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過(guò)嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.19、(1),(2)或【解析】
(1)根據(jù),,成等差數(shù)列,得到,解得答案.(2)討論和兩種情況,利用錯(cuò)位相減法計(jì)算得到答案.【詳解】(1)因?yàn)槭且粋€(gè)公比為q的等比數(shù)列,所以.因?yàn)椋傻炔顢?shù)列,所以即.解得,.(2)①若,又它的前4和,得,解得所以,因?yàn)椋ǎ啵啵啖谌簦炙那?和,即,因?yàn)椋ǎ?【點(diǎn)睛】本題考查了等比數(shù)列的計(jì)算,錯(cuò)位相減法,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;【解析】
(1)利用中點(diǎn)做輔助線,構(gòu)造出平行四邊形即可證明線面平行;(2)根據(jù)所給條件構(gòu)造出菱形,再根據(jù)兩個(gè)對(duì)應(yīng)的線段垂直關(guān)系即可得到線面垂直.【詳解】證明:(1)取CD中點(diǎn)M,連結(jié)OM,連結(jié)EM,在矩形ABCD中,又,則,于是四邊形EFOM為平行四邊形.∴FO∥EM.又∵FO平面CDE,且EM平面CDE,∴FO∥平面CDE.(2)連結(jié)FM,由(1)和已知條件,在等邊ΔCDE中,CM=DM,EM⊥CD且因此平行四邊形EFOM為菱形,從而EO⊥FM.∵CD⊥OM,CD⊥EM∴CD⊥平面EOM,從而CD⊥EO.而FMCD=M,所以EO⊥平面CDF.【點(diǎn)睛】(1)線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線平行于此平面;(2)線面垂直的判定定理:一條直線與平面內(nèi)兩條相交直線垂直,則該直線垂直于此平面.21、(1)445米;(2)在弧的中點(diǎn)處【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工分紅合同協(xié)議書(shū)
- 2025年國(guó)際化教育中跨文化交流能力培養(yǎng)的跨文化教育創(chuàng)新研究
- 探索建筑節(jié)能新境界:2025年被動(dòng)式超低能耗建筑技術(shù)原理與推廣前景分析報(bào)告
- 交通運(yùn)輸與物流:物流行業(yè)物流信息化建設(shè)對(duì)物流行業(yè)行業(yè)發(fā)展的推動(dòng)作用報(bào)告
- 城市道路橋梁景觀規(guī)劃與實(shí)施效果評(píng)估報(bào)告
- 成品油罐內(nèi)外壁防腐施工方案
- 關(guān)+于我國(guó)資源型企業(yè)可持續(xù)發(fā)展制約因素分析
- 數(shù)字貨幣崛起2025年貨幣政策傳導(dǎo)機(jī)制變革研究報(bào)告
- 2025年三四線城市房地產(chǎn)市場(chǎng)潛力與區(qū)域發(fā)展規(guī)劃報(bào)告
- java高頻面試題目及答案
- 智慧海南總體方案(2020-2025年)
- 便攜式小板凳設(shè)計(jì)方案
- DG-TJ 08-2122-2021 保溫裝飾復(fù)合板墻體保溫系統(tǒng)應(yīng)用技術(shù)標(biāo)準(zhǔn)
- SFR-SE-ARC-0031激光跟蹤設(shè)置-作業(yè)指導(dǎo)書(shū)
- 錄音棚、攝影棚、直播室設(shè)計(jì)方案
- 河北工業(yè)大學(xué)C++終極題庫(kù)
- 安全生產(chǎn)隱患排查概述PPT課件
- CRCC認(rèn)證目錄
- 稻谷加工畢業(yè)設(shè)計(jì)日加工秈稻400噸免淘洗大米生產(chǎn)線設(shè)計(jì)
- 因式分解—完全平方公式
- 社會(huì)保險(xiǎn)申請(qǐng)表
評(píng)論
0/150
提交評(píng)論