




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省莆田市仙游縣楓亭中學新高考適應性考試數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,若為奇函數,則的最小值為()A. B. C. D.2.一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.3.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.在中,內角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.165.等腰直角三角形BCD與等邊三角形ABD中,,,現將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.6.已知函數,若函數的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.7.用電腦每次可以從區間內自動生成一個實數,且每次生成每個實數都是等可能性的.若用該電腦連續生成3個實數,則這3個實數都小于的概率為()A. B. C. D.8.“完全數”是一些特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.古希臘數學家畢達哥拉斯公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.9.設命題函數在上遞增,命題在中,,下列為真命題的是()A. B. C. D.10.已知復數滿足,則的值為()A. B. C. D.211.某學校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是17.5,30],樣本數據分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是()A.56 B.60 C.140 D.12012.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,點是邊的中點,則__________,________.14.在的展開式中,的系數為______用數字作答15.平面向量與的夾角為,,,則__________.16.在中,角A,B,C的對邊分別為a,b,c,且,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設的內角的對邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.18.(12分)設橢圓的右焦點為,過的直線與交于兩點,點的坐標為.(1)當直線的傾斜角為時,求線段AB的中點的橫坐標;(2)設點A關于軸的對稱點為C,求證:M,B,C三點共線;(3)設過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標原點),求實數的取值范圍.19.(12分)已知函數.(1)若,求函數的單調區間;(2)若恒成立,求實數的取值范圍.20.(12分)健身館某項目收費標準為每次60元,現推出會員優惠活動:具體收費標準如下:現隨機抽取了100為會員統計它們的消費次數,得到數據如下:假設該項目的成本為每次30元,根據給出的數據回答下列問題:(1)估計1位會員至少消費兩次的概率(2)某會員消費4次,求這4次消費獲得的平均利潤;(3)假設每個會員每星期最多消費4次,以事件發生的頻率作為相應事件的概率,從會員中隨機抽取兩位,記從這兩位會員的消費獲得的平均利潤之差的絕對值為,求的分布列及數學期望21.(12分)已知橢圓()的離心率為,且經過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.22.(10分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據三角函數的變換規則表示出,根據是奇函數,可得的取值,再求其最小值.【詳解】解:由題意知,將函數的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,,因為是奇函數,所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數的變換以及三角函數的性質,屬于基礎題.2、B【解析】
根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.3、C【解析】
先得出兩直線平行的充要條件,根據小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發現兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.4、C【解析】
根據正弦定理邊化角以及三角函數公式可得,再根據面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.5、A【解析】
設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.6、C【解析】
對此分段函數的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環,而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經單調性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數極值的求解,從函數表達式中抽離出相應的等差數列和等比數列,最后分組求和,要求學生對數列和函數的熟悉程度高,為中檔題7、C【解析】
由幾何概型的概率計算,知每次生成一個實數小于1的概率為,結合獨立事件發生的概率計算即可.【詳解】∵每次生成一個實數小于1的概率為.∴這3個實數都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發生的概率,考查學生基本的計算能力,是一道容易題.8、C【解析】
先求出五個“完全數”隨機分為兩組,一組2個,另一組3個的基本事件總數為,再求出6和28恰好在同一組包含的基本事件個數,根據即可求出6和28不在同一組的概率.【詳解】解:根據題意,將五個“完全數”隨機分為兩組,一組2個,另一組3個,則基本事件總數為,則6和28恰好在同一組包含的基本事件個數,∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數的應用.9、C【解析】
命題:函數在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數單調性判斷出真假.【詳解】解:命題:函數,所以,當時,,即函數在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.10、C【解析】
由復數的除法運算整理已知求得復數z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數的除法運算與求復數的模,屬于基礎題.11、C【解析】
試題分析:由題意得,自習時間不少于小時的頻率為,故自習時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應用.12、B【解析】
①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數量積的應用,考查計算能力,屬于中檔題.14、1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數.【詳解】二項展開式的通項為令得的系數為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.15、【解析】
由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數量積,進而即可求出結果,屬于基礎題型.16、【解析】
利用正弦定理將邊化角,即可容易求得結果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現邊角互化,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用正弦定理化簡已知條件,由此求得的值,進而求得的大小.(2)利用正弦定理和兩角差的正弦公式,求得的表達式,進而求得的取值范圍.【詳解】(1)由題設知,,即,所以,即,又所以.(2)由題設知,,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【點睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.18、(1)AB的中點的橫坐標為;(2)證明見解析;(3)【解析】
設.(1)因為直線的傾斜角為,,所以直線AB的方程為,聯立方程組,消去并整理,得,則,故線段AB的中點的橫坐標為.(2)根據題意得點,若直線AB的斜率為0,則直線AB的方程為,A、C兩點重合,顯然M,B,C三點共線;若直線AB的斜率不為0,設直線AB的方程為,聯立方程組,消去并整理得,則,設直線BM、CM的斜率分別為、,則,即=,即M,B,C三點共線.(3)根據題意,得直線GH的斜率存在,設該直線的方程為,設,聯立方程組,消去并整理,得,由,整理得,又,所以,結合,得,當時,該直線為軸,即,此時橢圓上任意一點P都滿足,此時符合題意;當時,由,得,代入橢圓C的方程,得,整理,得,再結合,得到,即,綜上,得到實數的取值范圍是.19、(1)增區間為,減區間為;(2).【解析】
(1)將代入函數的解析式,利用導數可得出函數的單調區間;(2)求函數的導數,分類討論的范圍,利用導數分析函數的單調性,求出函數的最值可判斷是否恒成立,可得實數的取值范圍.【詳解】(1)當時,,則,當時,,則,此時,函數為減函數;當時,,則,此時,函數為增函數.所以,函數的增區間為,減區間為;(2),則,.①當時,即當時,,由,得,此時,函數為增函數;由,得,此時,函數為減函數.則,不合乎題意;②當時,即時,.不妨設,其中,令,則或.(i)當時,,當時,,此時,函數為增函數;當時,,此時,函數為減函數;當時,,此時,函數為增函數.此時,而,構造函數,,則,所以,函數在區間上單調遞增,則,即當時,,所以,.,符合題意;②當時,,函數在上為增函數,,符合題意;③當時,同理可得函數在上單調遞增,在上單調遞減,在上單調遞增,此時,則,解得.綜上所述,實數的取值范圍是.【點睛】本題考查導數知識的運用,考查函數的單調性與最值,考查恒成立問題,正確求導和分類討論是關鍵,屬于難題.20、(1)(2)22.5(3)見解析,【解析】
(1)根據頻數計算頻率,得出概率;(2)根據優惠標準計算平均利潤;(3)求出各種情況對應的的值和概率,得出分布列,從而計算出數學期望.【詳解】解:(1)估計1位會員至少消費兩次的概率;(2)第1次消費利潤;第2次消費利潤;第3次消費利潤;第4次消費利潤;這4次消費獲得的平均利潤:(3)1次消費利潤是27,概率是;2次消費利潤是,概率是;3次消費利潤是,概率是;4次消費利潤是,概率是;由題意:故分布列為:0期望為:【點睛】本題考查概率、平均利潤、離散型隨機變量的分布列和數學期望的求法,考查古典概型、相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,屬于中檔題.21、(1)(2)見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2026學年南陽市淅川縣數學三年級第一學期期末學業質量監測試題含解析
- 2025-2026學年福建省福州市晉安區數學三上期末復習檢測模擬試題含解析
- 2025-2026學年安徽省宣城市寧國區三上數學期末質量檢測模擬試題含解析
- 2025-2026學年阿城市數學三年級第一學期期末綜合測試試題含解析
- 2024年江蘇省南京市六合區三年級數學第一學期期末監測模擬試題含解析
- 公選《心理咨詢學派舉要》課件
- 八年級期中考試家長會課件
- 執業藥師考試解題技巧試題及答案
- 新時代中國文化的傳播方式與試題及答案
- 執業醫師考試強化訓練計劃試題及答案
- 工程材料封樣表
- 高中英語-Live form the Louvre教學設計學情分析教材分析課后反思
- 實驗室安全程序文件
- 醫療器械生產企業現場檢查表質量體系考核檢查表
- 部編版語文初一(下)期末復習:詞語成語運用檢測卷
- 《字體設計》模塊四 具象性變化設計技巧的訓練
- 年產10噸功能益生菌凍干粉的工廠設計改
- 英語老師家長會課件95908
- 盆底重建手術治療新進展
- 樹脂安全技術說明書(MSDS)
- 員工食堂廚師人員考核細則
評論
0/150
提交評論