




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西北工業大學附中新高考臨考沖刺數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.2.函數的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位3.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.44.已知集合,,則A. B. C. D.5.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當地的村委會,這三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明6.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或17.正項等比數列中的、是函數的極值點,則()A. B.1 C. D.28.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.49.函數的大致圖象是()A. B.C. D.10.本次模擬考試結束后,班級要排一張語文、數學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種11.設為定義在上的奇函數,當時,(為常數),則不等式的解集為()A. B. C. D.12.古希臘數學家畢達哥拉斯在公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個“完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點P是直線y=x+1上的動點,點Q是拋物線y=x2上的動點.設點M為線段PQ的中點,O為原點,則14.若實數,滿足,則的最小值為__________.15.集合,,則_____.16.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)函數(1)證明:;(2)若存在,且,使得成立,求取值范圍.18.(12分)△的內角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.19.(12分)已知函數,其中,.(1)函數的圖象能否與x軸相切?若能,求出實數a;若不能,請說明理由.(2)若在處取得極大值,求實數a的取值范圍.20.(12分)已知函數.(1)求函數的單調區間;(2)若,證明.21.(12分)已知函數f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數a的取值范圍;(3)證明:對一切,都有成立.22.(10分)設為坐標原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標準方程;(2)若橢圓外一點滿足,平行于軸,,動點在直線上,滿足.設過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F1,F2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯立①②得,聯立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關系,考查韋達定理的運用,考查向量知識,屬于中檔題.2、C【解析】
根據正弦型函數的圖象得到,結合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點睛】已知函數的圖象求解析式(1).(2)由函數的周期求(3)利用“五點法”中相對應的特殊點求,一般用最高點或最低點求.3、D【解析】
如圖所示:過點作垂直準線于,交軸于,則,設,,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準線于,交軸于,則,設,,則,當,即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學生的計算能力和轉化能力.4、C【解析】分析:根據集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內容,一般以客觀題形式出現,一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續型”集合則可借助不等式進行運算.5、B【解析】
將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎題.6、D【解析】
求得直線的斜率,利用曲線的導數,求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據切線方程求參數,屬于基礎題.7、B【解析】
根據可導函數在極值點處的導數值為,得出,再由等比數列的性質可得.【詳解】解:依題意、是函數的極值點,也就是的兩個根∴又是正項等比數列,所以∴.故選:B【點睛】本題主要考查了等比數列下標和性質以應用,屬于中檔題.8、A【解析】
根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.【點睛】本題考查了數列值的計算,意在考查學生的計算能力.9、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數圖象,屬基礎題.10、B【解析】
利用分步計數原理結合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題11、D【解析】
由可得,所以,由為定義在上的奇函數結合增函數+增函數=增函數,可知在上單調遞增,注意到,再利用函數單調性即可解決.【詳解】因為在上是奇函數.所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數的奇偶性、單調性解不等式,考查學生對函數性質的靈活運用能力,是一道中檔題.12、B【解析】
推導出基本事件總數,6和28恰好在同一組包含的基本事件個數,由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數,6和28恰好在同一組包含的基本事件個數,∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當直線相切時距離最小,計算得到答案.【詳解】如圖所示:過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點M為線段PQ的中點,故M在直線y=x+38時距離最小,故故答案為:32【點睛】本題考查了拋物線中距離的最值問題,轉化為切線問題是解題的關鍵.14、【解析】
由約束條件先畫出可行域,然后求目標函數的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當平行線經過點時取到最小值,由可得,此時,所以的最小值為.故答案為.【點睛】本題考查了線性規劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標函數,結合圖形求出最值,需要掌握解題方法.15、【解析】
分析出集合A為奇數構成的集合,即可求得交集.【詳解】因為表示為奇數,故.故答案為:【點睛】此題考查求集合的交集,根據已知集合求解,屬于簡單題.16、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)或或【解析】
(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因為所以(2)當時所以當且僅當即時等號成立因為存在,且,使得成立所以所以或解得:或或【點睛】1.要熟練掌握絕對值的三角不等式,即2.應用基本不等式求最值時要滿足“一正二定三相等”.18、(I);(II).【解析】
試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點:1、解三角形;2、三角恒等變換.19、(1)答案見解析(2)【解析】
(1)假設函數的圖象與x軸相切于,根據相切可得方程組,看方程是否有解即可;(2)求出的導數,設(),根據函數的單調性及在處取得極大值求出a的范圍即可.【詳解】(1)函數的圖象不能與x軸相切,理由若下:.假設函數的圖象與x軸相切于則即顯然,,代入中得,無實數解.故函數的圖象不能與x軸相切.(2)(),,設(),恒大于零.在上單調遞增.又,,,∴存在唯一,使,且時,時,①當時,恒成立,在單調遞增,無極值,不合題意.②當時,可得當時,,當時,.所以在內單調遞減,在內單調遞增,所以在處取得極小值,不合題意.③當時,可得當時,,當時,.所以在內單調遞增,在內單調遞減,所以在處取得極大值,符合題意.此時由得即,綜上可知,實數a的取值范圍為.【點睛】本題考查了函數的單調性,最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.20、(1)單調遞減區間為,,無單調遞增區間(2)證明見解析【解析】
(1)求導,根據導數的正負判斷單調性,(2)整理,化簡為,令,求的單調性,以及,即證.【詳解】解:(1)函數定義域為,則,令,,則,當,,單調遞減;當,,單調遞增;故,,,,故函數的單調遞減區間為,,無單調遞增區間.(2)證明,即為,因為,即證,令,則,令,則,當時,,所以在上單調遞減,則,,則在上恒成立,所以在上單調遞減,所以要證原不等式成立,只需證當時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點睛】本題考查利用導數研究函數的單調性,利用導數證明不等式,函數的最值問題,屬于中檔題.21、(1)(2)((3)見證明【解析】
(1)先求函數導數,再求導函數零點,列表分析導函數符號變化規律確定函數單調性,最后根據函數單調性確定最小值取法;(2)先分離不等式,轉化為對應函數最值問題,利用導數求對應函數最值即得結果;(3)構造兩個函數,再利用兩函數最值關系進行證明.【詳解】(1)當時,單調遞減,當時,單調遞增,所以函數f(x)的最小值為f()=;(2)因為所以問題等價于在上恒成立,記則,因為,令函數f(x)在(0,1)上單調遞減;函數f(x)在(1,+)上單調遞增;即,即實數a的取值范圍為(.(3)問題等價于證明由(1)知道,令函數在(0,1)上單調遞增;函數在(1,+)上單調遞減;所以{,因此,因為兩個等號不能同時取得,所以即對一切,都有成立.【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧裝備制造職業技術學院《生物制藥工藝學實驗》2023-2024學年第二學期期末試卷
- 山東省淄博市淄川區2025年小升初??家族e數學檢測卷含解析
- 濮陽科技職業學院《住區規劃設計》2023-2024學年第二學期期末試卷
- 六盤水幼兒師范高等??茖W?!队袡C化學(下)》2023-2024學年第二學期期末試卷
- 2025年心理咨詢師考試復習試卷及答案
- 2025年語言文學學科綜合能力測評試卷及答案
- 2025年游戲開發與設計專業考試試卷及答案
- 2025年新能源科學與工程專業考試試卷及答案
- 遂寧職業學院《英美文學導讀》2023-2024學年第一學期期末試卷
- 山西華澳商貿職業學院《土木工程施工與組織》2023-2024學年第二學期期末試卷
- 陜西省咸陽市2025屆高三下學期高考模擬檢測(三)物理試題(含答案)
- 浙江省溫州市2023-2024學年高一下學期期末考試語文試卷(含答案)
- 2025年護士執業資格考試題庫:護理教育與培訓新生兒護理試題集
- GB 38031-2025電動汽車用動力蓄電池安全要求
- 兒童糖尿病酮癥酸中毒診療指南(2024)解讀課件
- 跟我學古箏智慧樹知到期末考試答案章節答案2024年麗水學院
- 師德師風教育整頓談心談話記錄表
- 鑄造作業指導書
- 儲層地質學(中國石油大學)-2沉積相分析
- 阿壩州水文特性分析
- 國家開放大學《土木工程力學(本)》形考作業1-5參考答案
評論
0/150
提交評論