湖北省老河口市2024屆中考數學全真模擬試題含解析_第1頁
湖北省老河口市2024屆中考數學全真模擬試題含解析_第2頁
湖北省老河口市2024屆中考數學全真模擬試題含解析_第3頁
湖北省老河口市2024屆中考數學全真模擬試題含解析_第4頁
湖北省老河口市2024屆中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省老河口市2024屆中考數學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示是由幾個完全相同的小正方體組成的幾何體的三視圖.若小正方體的體積是1,則這個幾何體的體積為()A.2 B.3 C.4 D.52.如圖,正比例函數的圖像與反比例函數的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>23.2017年人口普查顯示,河南某市戶籍人口約為2536000人,則該市戶籍人口數據用科學記數法可表示為()A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人4.在武漢市舉辦的“讀好書、講禮儀”活動中,某學校積極行動,各班圖書角的新書、好書不斷增多,除學校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學捐獻圖書的情況統計圖,根據圖中信息,該班平均每人捐書的冊數是()A.3B.3.2C.4D.4.55.在下列實數中,﹣3,,0,2,﹣1中,絕對值最小的數是()A.﹣3 B.0 C. D.﹣16.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm7.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結論的個數為()A.1個 B.2個 C.3個 D.4個8.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.9.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數是()A.1 B.2 C.3 D.410.∠BAC放在正方形網格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.計算的結果是_____12.《九章算術》是中國傳統數學最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.13.如圖,在矩形紙片ABCD中,AB=2cm,點E在BC上,且AE=CE.若將紙片沿AE折疊,點B恰好與AC上的點B1重合,則AC=_____cm.14.如圖,AB=AC,AD∥BC,若∠BAC=80°,則∠DAC=__________.15.九(5)班有男生27人,女生23人,班主任發放準考證時,任意抽取一張準考證,恰好是女生的準考證的概率是________________.16.已知是二元一次方程組的解,則m+3n的立方根為__.17.若關于x的函數與x軸僅有一個公共點,則實數k的值為.三、解答題(共7小題,滿分69分)18.(10分)在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.求每臺電腦、每臺電子白板各多少萬元?根據學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.19.(5分)一輛高鐵與一輛動車組列車在長為1320千米的京滬高速鐵路上運行,已知高鐵列車比動車組列車平均速度每小時快99千米,且高鐵列車比動車組列車全程運行時間少3小時,求這輛高鐵列車全程運行的時間和平均速度.20.(8分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?21.(10分)如圖,是的外接圓,是的直徑,過圓心的直線于,交于,是的切線,為切點,連接,.(1)求證:直線為的切線;(2)求證:;(3)若,,求的長.22.(10分)隨著交通道路的不斷完善,帶動了旅游業的發展,某市旅游景區有A、B、C、D、E等著名景點,該市旅游部門統計繪制出2017年“五?一”長假期間旅游情況統計圖,根據以下信息解答下列問題:2017年“五?一”期間,該市周邊景點共接待游客萬人,扇形統計圖中A景點所對應的圓心角的度數是,并補全條形統計圖.根據近幾年到該市旅游人數增長趨勢,預計2018年“五?一”節將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結果.23.(12分)如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F(1)證明:PC=PE;(2)求∠CPE的度數;(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.24.(14分)武漢二中廣雅中學為了進一步改進本校九年級數學教學,提高學生學習數學的興趣.校教務處在九年級所有班級中,每班隨機抽取了6名學生,并對他們的數學學習情況進行了問卷調查:我們從所調查的題目中,特別把學生對數學學習喜歡程度的回答(喜歡程度分為:“非常喜歡”、“比較喜歡”、“不太喜歡”、“很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統計.現將統計結果繪制成如下兩幅不完整的統計圖.請你根據以上提供的信息,解答下列問題:(1)補全上面的條形統計圖和扇形統計圖;(2)所抽取學生對數學學習喜歡程度的眾數是,圖②中所在扇形對應的圓心角是;(3)若該校九年級共有960名學生,請你估算該年級學生中對數學學習“不太喜歡”的有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據左視圖發現最右上角共有2個小立方體,綜合以上,可以發現一共有4個立方體,主視圖和左視圖都是上下兩行,所以這個幾何體共由上下兩層小正方體組成,俯視圖有3個小正方形,所以下面一層共有3個小正方體,結合主視圖和左視圖的形狀可知上面一層只有最左邊有個小正方體,故這個幾何體由4個小正方體組成,其體積是4.故選C.【點睛】錯因分析

容易題,失分原因:未掌握通過三視圖還原幾何體的方法.2、D【解析】

先根據反比例函數與正比例函數的性質求出B點坐標,再由函數圖象即可得出結論.【詳解】解:∵反比例函數與正比例函數的圖象均關于原點對稱,

∴A、B兩點關于原點對稱,

∵點A的橫坐標為1,∴點B的橫坐標為-1,

∵由函數圖象可知,當-1<x<0或x>1時函數y1=k1x的圖象在的上方,

∴當y1>y1時,x的取值范圍是-1<x<0或x>1.

故選:D.【點睛】本題考查的是反比例函數與一次函數的交點問題,能根據數形結合求出y1>y1時x的取值范圍是解答此題的關鍵.3、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】2536000人=2.536×106人.故選C.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、B【解析】七年級(1)班捐獻圖書的同學人數為9÷18%=50人,捐獻4冊的人數為50×30%=15人,捐獻3冊的人數為50-6-9-15-8=12人,所以該班平均每人捐書的冊數為(6+9×2+12×3+15×4+8×5)÷50=3.2冊,故選B.5、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數是0,故選:B.6、B【解析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據題目中所告訴的AB和BC的大小關系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.7、A【解析】

如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【點睛】本題考查二次函數系數符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.8、D【解析】

先求得∠A=∠BCD,然后根據銳角三角函數的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數值只與角的大小有關,因而求一個角的函數值,可以轉化為求與它相等的其它角的三角函數值.9、B【解析】試題分析:根據俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖10、D【解析】

連接CD,再利用勾股定理分別計算出AD、AC、BD的長,然后再根據勾股定理逆定理證明∠ADC=90°,再利用三角函數定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數定義,關鍵是證明∠ADC=90°.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】【分析】根據二次根式的運算法則進行計算即可求出答案.【詳解】==,故答案為.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則.12、【解析】分析:由正方形的性質得到∠EDG=90°,從而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性質得到CK:KD=HD:HA,求解即可得到結論.詳解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案為:.點睛:本題考查了相似三角形的應用.解題的關鍵是證明△CKD∽△DHA.13、4【解析】

∵AB=2cm,AB=AB1,∴AB1=2cm,∵四邊形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.14、50°【解析】

根據等腰三角形頂角度數,可求出每個底角,然后根據兩直線平行,內錯角相等解答.【詳解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案為50°.【點睛】本題考查了等腰三角形的性質以及平行線性質的應用,注意:兩直線平行,內錯角相等.15、23【解析】

用女生人數除以總人數即可.【詳解】由題意得,恰好是女生的準考證的概率是2350故答案為:2350【點睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=mn16、3【解析】

把x與y的值代入方程組求出m與n的值,即可確定出所求.【詳解】解:把代入方程組得:相加得:m+3n=27,則27的立方根為3,故答案為3【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程左右兩邊相等的未知數的值.17、0或-1。【解析】由于沒有交待是二次函數,故應分兩種情況:當k=0時,函數是一次函數,與x軸僅有一個公共點。當k≠0時,函數是二次函數,若函數與x軸僅有一個公共點,則有兩個相等的實數根,即。綜上所述,若關于x的函數與x軸僅有一個公共點,則實數k的值為0或-1。三、解答題(共7小題,滿分69分)18、(1)每臺電腦0.5萬元,每臺電子白板1.5萬元(2)見解析【解析】解:(1)設每臺電腦x萬元,每臺電子白板y萬元,根據題意得:,解得:。答:每臺電腦0.5萬元,每臺電子白板1.5萬元。(2)設需購進電腦a臺,則購進電子白板(30-a)臺,則,解得:,即a=15,16,17。故共有三種方案:方案一:購進電腦15臺,電子白板15臺.總費用為萬元;方案二:購進電腦16臺,電子白板14臺.總費用為萬元;方案三:購進電腦17臺,電子白板13臺.總費用為萬元。∴方案三費用最低。(1)設電腦、電子白板的價格分別為x,y元,根據等量關系:“1臺電腦+2臺電子白板=3.5萬元”,“2臺電腦+1臺電子白板=2.5萬元”,列方程組求解即可。(2)設計方案題一般是根據題意列出不等式組,求不等式組的整數解。設購進電腦x臺,電子白板有(30-x)臺,然后根據題目中的不等關系“總費用不超過30萬元,但不低于28萬元”列不等式組解答。19、這輛高鐵列車全程運行的時間為1小時,平均速度為264千米/小時.【解析】

設動車組列車的平均速度為x千米/小時,則高鐵列車的平均速度為(x+99)千米/小時,根據時間=路程÷速度結合高鐵列車比動車組列車全程運行時間少3小時,即可得出關于x的分式方程,解之經檢驗后即可得出結論.【詳解】設動車組列車的平均速度為x千米/小時,則高鐵列車的平均速度為(x+99)千米/小時,根據題意得:﹣=3,解得:x1=161,x2=﹣264(不合題意,舍去),經檢驗,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:這輛高鐵列車全程運行的時間為1小時,平均速度為264千米/小時.【點睛】本題考查了列分式方程解實際問題的運用及分式方程的解法的運用,解答時根據條件建立方程是關鍵,解答時對求出的根必須檢驗,這是解分式方程的必要步驟.20、20千米【解析】

由勾股定理兩直角邊的平方和等于斜邊的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜邊相等兩次利用勾股定理得到AD2+AE2=BE2+BC2,設AE為x,則BE=10﹣x,將DA=8,CB=2代入關系式即可求得.【詳解】解:設基地E應建在離A站x千米的地方.則BE=(50﹣x)千米在Rt△ADE中,根據勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根據勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D兩村到E點的距離相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E應建在離A站20千米的地方.考點:勾股定理的應用.21、(1)證明見解析;(2)證明見解析;(3)1.【解析】

(1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得到OA垂直于AP,利用全等三角形的對應角相等及垂直的定義得到OB垂直于BP,即PB為圓O的切線;

(2)由一對直角相等,一對公共角,得出三角形AOD與三角形OAP相似,由相似得比例,列出關系式,由OA為EF的一半,等量代換即可得證.【詳解】(1)連接OB,

∵PB是⊙O的切線,

∴∠PBO=90°.

∵OA=OB,BA⊥PO于D,

∴AD=BD,∠POA=∠POB.

又∵PO=PO,

∴△PAO≌△PBO.

∴∠PAO=∠PBO=90°,

∴直線PA為⊙O的切線.(2)由(1)可知,,,,=90,,,,即,是直徑,是半徑,,,整理得;(3)是中點,是中點,是的中位線,,,,是直角三角形,在中,,,,,,則,、是半徑,,在中,,,由勾股定理得:,即,解得:或(舍去),,.【點睛】本題考查了切線的判定與性質,相似及全等三角形的判定與性質以及銳角三角函數關系等知識,熟練掌握切線的判定與性質是解本題的關鍵.22、(1)50,108°,補圖見解析;(2)9.6;(3).【解析】

(1)根據A景點的人數以及百分表進行計算即可得到該市周邊景點共接待游客數;先求得A景點所對應的圓心角的度數,再根據扇形圓心角的度數=部分占總體的百分比×360°進行計算即可;根據B景點接待游客數補全條形統計圖;(2)根據E景點接待游客數所占的百分比,即可估計2018年“五?一”節選擇去E景點旅游的人數;(3)根據甲、乙兩個旅行團在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據概率公式進行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市周邊景點共接待游客數為:15÷30%=50(萬人),A景點所對應的圓心角的度數是:30%×360°=108°,B景點接待游客數為:50×24%=12(萬人),補全條形統計圖如下:(2)∵E景點接待游客數所占的百分比為:×100%=12%,∴2018年“五?一”節選擇去E景點旅游的人數約為:80×12%=9.6(萬人);(3)畫樹狀圖可得:∵共有9種可能出現的結果,這些結果出現的可能性相等,其中同時選擇去同一個景點的結果有3種,∴同時選擇去同一個景點的概率=.【點睛】本題考查列表法與樹狀圖法;用樣本估計總體;扇形統計圖;條形統計圖.23、(1)證明見解析(2)90°(3)AP=CE【解析】

(1)、根據正方形得出AB=BC,∠ABP=∠CBP=45°,結合PB=PB得出△ABP≌△CBP,從而得出結論;(2)、根據全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論