




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省贛縣三中高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.與圓關于直線對稱的圓的方程為()A. B.C. D.2.已知,下列不等式中成立的是()A. B. C. D.3.如圖是一三棱錐的三視圖,則此三棱錐內切球的體積為()A. B. C. D.4.長方體,,,,則異面直線與所成角的余弦值為A. B. C. D.5.天氣預報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經隨機模擬試驗產生了如下20組隨機數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計,這三天中恰有兩天下雨的概率近似為A.0.35 B.0.25 C.0.20 D.0.156.光線自點M(2,3)射到N(1,0)后被x軸反射,則反射光線所在的直線方程為()A. B.C. D.7.已知某線路公交車從6:30首發(fā),每5分鐘一班,甲、乙兩同學都從起點站坐車去學校,若甲每天到起點站的時間是在6:30~7:00任意時刻隨機到達,乙每天到起點站的時間是在6:45~7:15任意時刻隨機到達,那么甲、乙兩人搭乘同一輛公交車的概率是()A. B. C. D.8.在正方體中,異面直線與所成角的大小為()A. B. C. D.9.若非零實數(shù)滿足,則下列不等式成立的是()A. B. C. D.10.若,則()A.0 B.-1 C.1或0 D.0或-1二、填空題:本大題共6小題,每小題5分,共30分。11.5人排成一行合影,甲和乙不相鄰的排法有______種.(用數(shù)字回答)12.如圖是一個算法的流程圖,則輸出的的值是________.13.設,則等于________.14.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為______.15.數(shù)列的前項和,則的通項公式_____.16.已知數(shù)列中,,,,則的值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知點是函數(shù)的圖象上一點,等比數(shù)列的前n項和為,數(shù)列的首項為c,且前n項和滿足:當時,都有.(1)求c的值;(2)求證:為等差數(shù)列,并求出.(3)若數(shù)列前n項和為,是否存在實數(shù)m,使得對于任意的都有,若存在,求出m的取值范圍,若不存在,說明理由.18.如圖,已知四棱錐,底面是邊長為的菱形,,側面為正三角形,側面底面,為側棱的中點,為線段的中點(Ⅰ)求證:平面;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積19.某校全體教師年齡的頻率分布表如表1所示,其中男教師年齡的頻率分布直方圖如圖2所示.已知該校年齡在歲以下的教師中,男女教師的人數(shù)相等.表1:(1)求圖2中的值;(2)若按性別分層抽樣,隨機抽取16人參加技能比賽活動,求男女教師抽取的人數(shù);(3)若從年齡在的教師中隨機抽取2人,參加重陽節(jié)活動,求至少有1名女教師的概率.20.已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.從代號為A、B、C、D、E的5個人中任選2人(1)列出所有可能的結果;(2)若A、B、C三人為男性,D、E兩人為女性,求選出的2人中不全為男性的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
設所求圓的圓心坐標為,列出方程組,求得圓心關于的對稱點,即可求解所求圓的方程.【詳解】由題意,圓的圓心坐標,設所求圓的圓心坐標為,則圓心關于的對稱點,滿足,解得,即所求圓的圓心坐標為,且半徑與圓相等,所以所求圓的方程為,故選A.【點睛】本題主要考查了圓的方程的求解,其中解答中熟記圓的方程,以及準確求解點關于直線的對稱點的坐標是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、A【解析】
逐個選項進行判斷即可.【詳解】A選項,因為,所以.當時即不滿足選項B,C,D.故選A.【點睛】此題考查不等式的基本性質,是基礎題.3、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設內切球半徑為,則故三棱錐內切球體積故選4、A【解析】
由題,找出,故(或其補角)為異面直線與所成角,然后解出答案即可.【詳解】如圖,連接,由,(或其補角)為異面直線與所成角,由已知可得,則..即異面直線與所成角的余弦值為.故選A.【點睛】本題考查了異面直線的夾角問題,找平行線,找出夾角是解題的關鍵,屬于較為基礎題.5、B【解析】解:由題意知模擬三天中恰有兩天下雨的結果,經隨機模擬產生了如下20組隨機數(shù),在20組隨機數(shù)中表示三天中恰有兩天下雨的有:191、271、932、812、393,共5組隨機數(shù),∴所求概率為=0.1.故選B6、B【解析】試題分析:點關于軸的對稱點,則反射光線即在直線上,由,∴,故選B.考點:直線方程的幾種形式.7、D【解析】
根據(jù)甲、乙的到達時間,作出可行域,然后考慮甲、乙能同乘一輛公交車對應的區(qū)域面積,根據(jù)幾何概型的概率求解方法即可求解出對應概率.【詳解】設甲到起點站的時間為:時分,乙到起點站的時間為時分,所以,記事件為甲乙搭乘同一輛公交車,所以,作出可行域以及目標區(qū)域如圖所示:由幾何概型的概率計算可知:.故選:D.【點睛】本題考查利用線性規(guī)劃的可行域解決幾何概型中的面積模型問題,對于分析和轉化的能力要求較高,注意幾何概型中面積模型的概率計算方法,難度較難.8、C【解析】
連接、,可證四邊形為平行四邊形,得,得(或補角)就是異面直線與所成角,由正方體的性質即可得到答案.【詳解】連接、,如下圖:在正方體中,且;四邊形為平行四邊形,則;(或補角)就是異面直線與所成角;又在正方體中,,為等邊三角形,,即異面直線與所成角的大小為;故答案選C【點睛】本題考查正方體中異面直線所成角的大小,屬于基礎題.9、C【解析】
對每一個不等式逐一分析判斷得解.【詳解】A,不一定小于0,所以該選項不一定成立;B,如果a<0,b<0時,不成立,所以該選項不一定成立;C,,所以,所以該不等式成立;D,不一定小于0,所以該選項不一定成立.故選:C【點睛】本題主要考查不等式性質和比較法比較實數(shù)的大小,意在考查學生對這些知識的理解掌握水平和分析推理能力.10、D【解析】
由二倍角公式可得,即,從而分情況求解.【詳解】易得,或.
由得.
由,得.故選:D【點睛】本題考查二倍角公式的應用以及有關的二次齊次式子求值,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、72【解析】
先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為.【詳解】先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為種,故答案為72【點睛】本題考查排列、組合計數(shù)原理的應用,考查基本運算能力.12、【解析】由程序框圖,得運行過程如下:;,結束循環(huán),即輸出的的值是7.13、【解析】
首先根據(jù)題中求出的周期,然后利用周期性即可求出答案.【詳解】由題知,有,故的周期為,故,又因為,有.故答案為:.【點睛】本題考查了三角函數(shù)的周期性,屬于基礎題.14、【解析】
根據(jù)三角函數(shù)圖象依次求得的值.【詳解】由圖象可知,,所以,故,將點代入上式得,因為,所以.故.故答案為:【點睛】本小題主要考查根據(jù)三角函數(shù)的圖象求三角函數(shù)的解析式,屬于基礎題.15、【解析】
根據(jù)和之間的關系,應用公式得出結果【詳解】當時,;當時,;∴故答案為【點睛】本題考查了和之間的關系式,注意當和時要分開討論,題中的數(shù)列非等差數(shù)列.本題屬于基礎題16、1275【解析】
根據(jù)遞推關系式可求得,從而利用并項求和的方法將所求的和轉化為,利用等差數(shù)列求和公式求得結果.【詳解】由得:則,即本題正確結果:【點睛】本題考查并項求和法、等差數(shù)列求和公式的應用,關鍵是能夠利用遞推關系式得到數(shù)列相鄰兩項之間的關系,從而采用并項的方式來進行求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)證明見解析,;(3)存在,.【解析】
(1)根據(jù)題意可得,再根據(jù)等比數(shù)列的性質即可求出c(2)根據(jù)題意可得,然后求出和(3)利用裂項求和法求出前n項和為,然后就可得出m的范圍【詳解】(1)因為所以,即即前n項和為,所以,因為是等比數(shù)列所以有,即解得(2)且數(shù)列構成一個首項為1,公差為1的等差數(shù)列所以,即
所以(3)因為對于任意的都有所以【點睛】常見的數(shù)列求和方法有公式法即等差等比數(shù)列的求和公式、分組求和法、裂項相消法、錯位相減法.18、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)【解析】
(Ⅰ)連接,交于點;根據(jù)三角形中位線可證得;由線面平行判定定理可證得結論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質可知平面;根據(jù)線面垂直性質可證得結論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉化為;根據(jù)已知長度和角度關系分別求得四邊形面積和高,代入得到結果.【詳解】(Ⅰ)證明:連接,交于點四邊形為菱形為中點又為中點平面,平面平面(Ⅱ)為正三角形,為中點平面平面,平面平面,平面平面,又平面(Ⅲ)為中點又,,由(Ⅱ)知,【點睛】本題考查立體幾何中線面平行、線線垂直關系的證明、三棱錐體積的求解問題;涉及到線面平行判定定理、面面垂直性質定理和判定定理的應用、體積橋的方式求解三棱錐體積等知識,屬于常考題型.19、(1);(2)見解析;(3)【解析】
由男教師年齡的頻率分布直方圖總面積為1求得答案;由男教師年齡在的頻率可計算出男教師人數(shù),從而女教師人數(shù)也可求得,于是通過分層抽樣的比例關系即可得到答案;年齡在的教師中,男教師為(人),則女教師為1人,從而可計算出基本事件的概率.【詳解】(1)由男教師年齡的頻率分布直方圖得解得(2)該校年齡在歲以下的男女教師人數(shù)相等,且共14人,年齡在歲以下的男教師共7人由(1)知,男教師年齡在的頻率為男教師共有(人),女教師共有(人)按性別分層抽樣,隨機抽取16人參加技能比賽活動,則男教師抽取的人數(shù)為(人),女教師抽取的人數(shù)為人(3)年齡在的教師中,男教師為(人),則女教師為1人從年齡在的教師中隨機抽取2人,共有10種可能情形其中至少有1名女教師的有4種情形故所求概率為【點睛】本題主要考查頻率分布直方圖,分層抽樣,古典概率的計算,意在考查學生的計算能力和分析能力,難度不大.20、(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項公式先求得公差和公比,即得到結論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項和公式即可求得數(shù)列前n項和.試題解析:(Ⅰ)設等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項和為n(n+1),數(shù)列{2n﹣1}的前n項和為1×=2n﹣1,∴數(shù)列{bn}的前n項和為;考點:1.等差數(shù)列性質的綜合應用;2.等比數(shù)列性質的綜合應用;1.數(shù)列求和.21、(1)見解析(2)0.7【解析】
(1)從代號為、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自動駕駛技術服務合同書
- 電路理論模考試題+參考答案
- 植物練習題庫(附答案)
- 護理安全指引課件
- 2025年遼寧省錦州市部分學校中考數(shù)學零模試卷
- 化工原料采購合同模板
- 專業(yè)技術人才合作合同
- 夫妻離婚協(xié)議合同模板
- 混凝土采購長期合作協(xié)議合同
- 鋼結構安裝項目承包合同
- 癌癥治療協(xié)議書范例
- 《中華人民共和國機動車駕駛人科目一考試題庫》
- 小學體育課件《立定跳遠課件》課件
- 新生兒經外周置入中心靜脈導管實踐指南(第三版)解讀
- 肝硬化肝性腦病指南
- 租號協(xié)議書合同范本
- 2018中國技能?賽全國選拔賽“3D數(shù)字游戲藝術”項?技能樣題
- 屈原簡介課件教學課件
- 《十二怒漢》電影賞析
- 高血壓病課件
- 湘藝版 一年級下冊音樂 第一課 勇敢的鄂倫春 教案
評論
0/150
提交評論