




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省泰安市泰安一中2023-2024學年高三(最后沖刺)數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數是()A.0 B.1 C.2 D.32.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現.如圖所示的網格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.3.已知等差數列的前13項和為52,則()A.256 B.-256 C.32 D.-324.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,越小,模型的擬合效果越好;③若數據的方差為1,則的方差為4;④已知一組具有線性相關關系的數據,其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數為()A.4 B.3 C.2 D.15.已知是第二象限的角,,則()A. B. C. D.6.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當的外接圓面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.7.著名的斐波那契數列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40408.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.設α,β為兩個平面,則α∥β的充要條件是A.α內有無數條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面10.如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(米粒大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.134 B.67 C.182 D.10811.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.12.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區間上零點的個數為()A.9 B.10 C.18 D.20二、填空題:本題共4小題,每小題5分,共20分。13.若函數的圖像與直線的三個相鄰交點的橫坐標分別是,,,則實數的值為________.14.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.15.函數的圖象在處的切線方程為__________.16.函數的圖像如圖所示,則該函數的最小正周期為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.18.(12分)已知函數,.(1)求函數的極值;(2)當時,求證:.19.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設,,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.20.(12分)記數列的前項和為,已知成等差數列.(1)證明:數列是等比數列,并求的通項公式;(2)記數列的前項和為,求.21.(12分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.22.(10分)唐詩是中國文學的瑰寶.為了研究計算機上唐詩分類工作中檢索關鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機抽取了500篇,統計了每個類別及各類別包含“花”、“山”、“簾”字的篇數,得到下表:愛情婚姻詠史懷古邊塞戰爭山水田園交游送別羈旅思鄉其他總計篇數100645599917318500含“山”字的篇數5148216948304271含“簾”字的篇數2120073538含“花”字的篇數606141732283160(1)根據上表判斷,若從《全唐詩》含“山”字的唐詩中隨機抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計該唐詩屬于這兩個類別的概率;(2)已知檢索關鍵字的選取規則為:①若有超過95%的把握判斷“某字”與“某類別”有關系,則“某字”為“某類別”的關鍵字;②若“某字”被選為“某類別”關鍵字,則由其對應列聯表得到的的觀測值越大,排名就越靠前;設“山”“簾”“花”和“愛情婚姻”對應的觀測值分別為,,.已知,,請完成下面列聯表,并從上述三個字中選出“愛情婚姻”類別的關鍵字并排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計含“花”字的篇數不含“花”的篇數總計附:,其中.0.050.0250.0103.8415.0246.635
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
用空間四邊形對①進行判斷;根據公理2對②進行判斷;根據空間角的定義對③進行判斷;根據空間直線位置關系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數形結合思想,化歸與轉化思想.2、C【解析】
根據三視圖可知,該幾何體是由兩個圓錐和一個圓柱構成,由此計算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側面積為,下面圓錐的母線長為,底面周長為,側面積為,沒被擋住的部分面積為,中間圓柱的側面積為.故表面積為,故選C.【點睛】本小題主要考查中國古代數學文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎題.3、A【解析】
利用等差數列的求和公式及等差數列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數列的求和公式及等差數列的性質,等差數列的等和性應用能快速求得結果.4、C【解析】
①根據線性相關性與r的關系進行判斷,
②根據相關指數的值的性質進行判斷,
③根據方差關系進行判斷,
④根據點滿足回歸直線方程,但點不一定就是這一組數據的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關性越強,則相關系數r的絕對值越接近于1,故①正確;
②用相關指數的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;
③若統計數據的方差為1,則的方差為,故③正確;
④因為點滿足回歸直線方程,但點不一定就是這一組數據的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;
所以正確的命題有①③.
故選:C.【點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.5、D【解析】
利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.6、A【解析】
點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學生的計算能力和應用能力.7、D【解析】
計算,代入等式,根據化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數列,意在考查學生的計算能力和應用能力.8、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數在解三角形中的具體應用,屬于基礎題9、B【解析】
本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養,利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.10、B【解析】
根據幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內的米粒數大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.11、A【解析】
根據橢圓與雙曲線離心率的表示形式,結合和的離心率之積為,即可得的關系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點睛】本題考查了橢圓與雙曲線簡單幾何性質應用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎題.12、B【解析】
由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區間上零點的個數為10.故選:B.【點睛】本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
由題可分析函數與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【詳解】由題意得函數的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數周期的應用,考查求正弦型函數中的14、【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數據求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點睛】本題考查幾何體與三視圖的對應關系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關鍵是準確理解幾何體的定義,真正把握幾何體的結構特征,可以根據條件構建幾何模型,在幾何模型中進行判斷.15、【解析】
利用導數的幾何意義,對求導后在計算在處導函數的值,再利用點斜式列出方程化簡即可.【詳解】,則切線的斜率為.又,所以函數的圖象在處的切線方程為,即.故答案為:【點睛】本題主要考查了根據導數的幾何意義求解函數在某點處的切線方程問題,需要注意求導法則與計算,屬于基礎題.16、【解析】
根據圖象利用,先求出的值,結合求出,然后利用周期公式進行求解即可.【詳解】解:由,得,,,則,,,即,則函數的最小正周期,故答案為:8【點睛】本題主要考查三角函數周期的求解,結合圖象求出函數的解析式是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)由題意可得,的坐標,結合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設直線,求得的坐標,再設直線,求出點的坐標,寫出的方程,聯立與,可求出的坐標,由,可得關于的函數式,由單調性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標準方程為;(Ⅱ)設直線,則與直線的交點,又,設直線,聯立,消可得.解得,,聯立,得,,直線,聯立,解得,,,,,,,,函數在上單調遞增,,.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查運算求解能力,意在考查學生對這些知識的理解掌握水平和分析推理計算能力.18、(1)的極小值為,無極大值.(2)見解析.【解析】
(1)對求導,確定函數單調性,得到函數極值.(2)構造函數,證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調遞減,在上單調遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調遞減,在上單調遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【點睛】本題考查了函數的單調性,極值,不等式的證明,構造函數是解題的關鍵.19、(Ⅰ)證明見解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標系,設,計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標原點,為軸,為軸,為軸建立空間直角坐標系,則,,,,,,,設,則,設平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.【點睛】本題考查了立體幾何和空間向量綜合,考查了學生邏輯推理,空間想象,數學運算的能力,屬于中檔題.20、(1)證明見解析,;(2)【解析】
(1)由成等差數列,可得到,再結合公式,消去,得到,再給等式兩邊同時加1,整理可證明結果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項和.【詳解】(1)由成等差數列,則,即,①當時,,又,②由①②可得:,即,時,.所以是以3為首項,3為公比的等比數列,,所以.(2),所以.【點睛】此題考查了數列遞推式,等比數列的證明,裂列相消求和,考查了學生分析問題和解決問題的能力,屬于中檔題.21、(1)或(2).【解析】
(1)根據題意分斜率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫院信息系統與銀行的合作模式探討
- 醫療行業中的可持續包裝解決方案-EPS再生料介紹
- 區塊鏈在醫療健康認證中的透明化應用
- 醫務管理者的道德領導力培養
- 醫療科技助力醫養結合引領養老新風尚
- 低段語文教研組總結模版
- 二房東轉租合同范例
- 從金融到非金融看區塊鏈如何全面改變行業
- 醫院管理中患者隱私保護的制度建設與實施
- 醫療行業數據泄露的危害與防范措施
- 港口散裝液體危險化學品港口經營人的裝卸管理人員從業資格考試
- 分子診斷技術在感染性疾病中的應用
- 龍門吊安裝拆除安全施工專項方案
- 高水平專業群《環境藝術設計專業群》自評報告
- 穿孔機作業指導書
- 高等數學同濟第七版上冊課后習題答案(全套)
- 人教鄂教版六年級下冊科學全冊知識點匯總
- 新航道托福雅思培訓班
- 高中-物理 電磁感應現象及應用 說課課件
- 數車實訓圖紙
- 1小學英語教師面試:聽力課SpecialdaysinApril全英文教案及試講逐字稿
評論
0/150
提交評論