




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省洛陽市洛寧縣重點達標名校中考數學最后沖刺模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.52.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.3.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:94.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網絡上推出,即刻轉發量就超過810000這個數用科學記數法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1045.的值是A.±3 B.3 C.9 D.816.如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°7.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤28.如圖是小強用八塊相同的小正方體搭建的一個積木,它的左視圖是()A. B. C. D.9.“遼寧號”航母是中國海軍航空母艦的首艦,標準排水量57000噸,滿載排水量67500噸,數據67500用科學記數法表示為A.675×102 B.67.5×102 C.6.75×104 D.6.75×10510.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學生的心理健康情況,應該采用普查的方式C.一組數據8,8,7,10,6,8,9的眾數和中位數都是8D.若甲組數據的方差S="0.01",乙組數據的方差s=0.1,則乙組數據比甲組數據穩定二、填空題(共7小題,每小題3分,滿分21分)11.在不透明的口袋中有若干個完全一樣的紅色小球,現放入10個僅顏色不同的白色小球,均勻混合后,有放回的隨機摸取30次,有10次摸到白色小球,據此估計該口袋中原有紅色小球個數為_____.12.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯結PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.13.如圖,⊙O的直徑AB=8,C為的中點,P為⊙O上一動點,連接AP、CP,過C作CD⊥CP交AP于點D,點P從B運動到C時,則點D運動的路徑長為_____.14.請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.A.如圖,在平面直角坐標系中,點的坐標為,沿軸向右平移后得到,點的對應點是直線上一點,則點與其對應點間的距離為__________.B.比較__________的大小.15.已知二次函數與一次函數的圖象相交于點,如圖所示,則能使成立的x的取值范圍是______.16.一個正方形AOBC各頂點的坐標分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____.17.如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點O順時針旋轉90°后得到Rt△FOE,將線段EF繞點E逆時針旋轉90°后得到線段ED,分別以O、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長線交于.(1)求證:是圓的切線;(2)如圖2,延長,交圓于點,點是劣弧的中點,,,求的長.19.(5分)如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結求證:.20.(8分)如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?21.(10分)當x取哪些整數值時,不等式與4﹣7x<﹣3都成立?22.(10分)如圖,兒童游樂場有一項射擊游戲.從O處發射小球,將球投入正方形籃筐DABC.正方形籃筐三個頂點為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點P坐標(n,0)(1)點C坐標為;(2)求出小球飛行中最高點N的坐標(用含有n的代數式表示);(3)驗證:隨著n的變化,拋物線的頂點在函數y=x2的圖象上運動;(4)若小球發射之后能夠直接入籃,球沒有接觸籃筐,請直接寫出n的取值范圍.23.(12分)現有四張分別標有數字1、2、2、3的卡片,他們除數字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標數字不同的概率()A. B. C. D.24.(14分)某初級中學正在展開“文明城市創建人人參與,志愿服務我當先行”的“創文活動”為了了解該校志愿者參與服務情況,現對該校全體志愿者進行隨機抽樣調查.根據調查數據繪制了如下所示不完整統計圖.條形統計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統計圖中的百分數指的是該年級被抽到的志愿者數與樣本容量的比.請補全條形統計圖;若該校共有志愿者600人,則該校九年級大約有多少志愿者?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
連接AE,根據翻折變換的性質和正方形的性質可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據勾股定理求出DE的長.【詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【點睛】熟練掌握翻折變換、正方形的性質、全等三角形的判定與性質是本題的解題關鍵.2、D【解析】
找到從正面看所得到的圖形即可,注意所有看到的棱都應表現在主視圖中.【詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.
故選A.【點睛】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.3、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.4、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】810000=8.1×1.
故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、C【解析】試題解析:∵∴的值是3故選C.6、D【解析】∵四邊形ADA'E的內角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.7、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D8、D【解析】
左視圖從左往右,2列正方形的個數依次為2,1,依此得出圖形D正確.故選D.【詳解】請在此輸入詳解!9、C【解析】
根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).【詳解】67500一共5位,從而67500=6.75×104,故選C.10、C【解析】
眾數,中位數,方差等概念分析即可.【詳解】A、中獎是偶然現象,買再多也不一定中獎,故是錯誤的;B、全國中學生人口多,只需抽樣調查就行了,故是錯誤的;C、這組數據的眾數和中位數都是8,故是正確的;D、方差越小越穩定,甲組數據更穩定,故是錯誤.故選C.【點睛】考核知識點:眾數,中位數,方差.二、填空題(共7小題,每小題3分,滿分21分)11、20【解析】
利用頻率估計概率,設原來紅球個數為x個,根據摸取30次,有10次摸到白色小球結合概率公式可得關于x的方程,解方程即可得.【詳解】設原來紅球個數為x個,則有=,解得,x=20,經檢驗x=20是原方程的根.故答案為20.【點睛】本題考查了利用頻率估計概率和概率公式的應用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關鍵.12、2【解析】
由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【點睛】本題考查的知識點是圓的性質,解題的關鍵是熟練的掌握圓的性質.13、【解析】分析:以AC為斜邊作等腰直角三角形ACQ,則∠AQC=90°,依據∠ADC=135°,可得點D的運動軌跡為以Q為圓心,AQ為半徑的,依據△ACQ中,AQ=4,即可得到點D運動的路徑長為=2π.詳解:如圖所示,以AC為斜邊作等腰直角三角形ACQ,則∠AQC=90°.∵⊙O的直徑為AB,C為的中點,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴點D的運動軌跡為以Q為圓心,AQ為半徑的.又∵AB=8,C為的中點,∴AC=4,∴△ACQ中,AQ=4,∴點D運動的路徑長為=2π.故答案為2π.點睛:本題考查了軌跡,等腰直角三角形的性質,圓周角定理以及弧長的計算,正確作出輔助線是解題的關鍵.14、5>【解析】
A:根據平移的性質得到OA′=OA,OO′=BB′,根據點A′在直線求出A′的橫坐標,進而求出OO′的長度,最后得到BB′的長度;B:根據任意角的正弦值等于它余角的余弦值將sin53°化為cos37°,再進行比較.【詳解】A:由平移的性質可知,OA′=OA=4,OO′=BB′.因為點A′在直線上,將y=4代入,得到x=5.所以OO′=5,又因為OO′=BB′,所以點B與其對應點B′間的距離為5.故答案為5.B:sin53°=cos(90°-53°)=cos37°,tan37°=,根據正切函數與余弦函數圖像可知,tan37°>tan30°,cos37°>cos45°,即tan37°>,cos37°<,又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.【點睛】本題主要考查圖形的平移、一次函數的解析式和三角函數的圖像,熟練掌握這些知識并靈活運用是解答的關鍵.15、x<-2或x>1【解析】試題分析:根據函數圖象可得:當時,x<-2或x>1.考點:函數圖象的性質16、(,)或(﹣,﹣).【解析】
分點A、B、C的對應點在第一象限和第三象限兩種情況,根據位似變換和正方形的性質解答可得.【詳解】如圖,①當點A、B、C的對應點在第一象限時,由位似比為1:2知點A′(0,)、B′(,0)、C′(,),∴該正方形的中心點的P的坐標為(,);②當點A、B、C的對應點在第三象限時,由位似比為1:2知點A″(0,-)、B″(-,0)、C″(-,-),∴此時新正方形的中心點Q的坐標為(-,-),故答案為(,)或(-,-).【點睛】本題主要考查位似變換,解題的關鍵是熟練掌握位似變換的性質和正方形的性質.17、.【解析】
作DH⊥AE于H,根據勾股定理求出AB,根據陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,利用扇形面積公式計算即可.【詳解】解:如圖作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋轉的性質可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積==,故答案:.【點睛】本題主要考查扇形的計算公式,正確表示出陰影部分的面積是計算的關鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)【解析】
(1)連接OA,利用切線的判定證明即可;
(2)分別連結OP、PE、AE,OP交AE于F點,根據勾股定理解答即可.【詳解】解:(1)如圖,連結OA,
∵OA=OB,OC⊥AB,
∴∠AOC=∠BOC,
又∠BAD=∠BOC,
∴∠BAD=∠AOC
∵∠AOC+∠OAC=90°,
∴∠BAD+∠OAC=90°,
∴OA⊥AD,
即:直線AD是⊙O的切線;
(2)分別連結OP、PE、AE,OP交AE于F點,
∵BE是直徑,
∴∠EAB=90°,
∴OC∥AE,
∵OB=,
∴BE=13
∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=-=4
在直角△PEF中,FP=4,EF=6,PE2=16+36=52,
在直角△PEB中,BE=13,PB2=BE2-PE2,
PB==3.【點睛】本題考查了切線的判定,勾股定理,正確的作出輔助線是解題的關鍵.19、證明見解析【解析】分析:根據平行四邊形的性質以及已知的條件得出△EGD和△FHB全等,從而得出DG=BH,從而說明AG和CH平行且相等,得出四邊形AHCG為平行四邊形,從而得出答案.詳解:證明:在?ABCD中,,,又
,≌,,,又,四邊形AGCH為平行四邊形,.點睛:本題主要考查的是平行四邊形的性質以及判定定理,屬于基礎題型.解決這個問題的關鍵就是根據平行四邊形的性質得出四邊形AHCG為平行四邊形.20、(1)y=﹣x2+2x+3;(2)當t=或t=時,△PCQ為直角三角形;(3)當t=2時,△ACQ的面積最大,最大值是1.【解析】
(1)根據拋物線的對稱軸與矩形的性質可得點A的坐標,根據待定系數法可得拋物線的解析式;(2)先根據勾股定理可得CE,再分兩種情況:當∠QPC=90°時;當∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據待定系數法可得直線AC的解析式,根據S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上,∴點A坐標為(1,4),設拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當∠QPC=90°時,∵cos∠QPC=,∴,解得t=;當∠PQC=90°時,∵cos∠QCP=,∴,解得t=.∴當t=或t=時,△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點的橫坐標為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點的縱坐標為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ?AG+FQ?DG,=FQ(AG+DG),=FQ?AD,=×2(t﹣),=﹣(t﹣2)2+1,∴當t=2時,△ACQ的面積最大,最大值是1.【點睛】考查了二次函數綜合題,涉及的知識點有:拋物線的對稱軸,矩形的性質,待定系數法求拋物線的解析式,待定系數法求直線的解析式,勾股定理,銳角三角函數,三角形面積,二次函數的最值,方程思想以及分類思想的運用.21、2,1【解析】
根據題意得出不等式組,解不等式組求得其解集即可.【詳解】根據題意得,解不等式①,得:x≤1,解不等式②,得:x>1,則不等式組的解集為1<x≤1,∴x可取的整數值是2,1.【點睛】本題考查了解不等式組的能力,根據題意得出不等式組是解題的關鍵.22、(1)(3,3);(2)頂點N坐標為(,);(3)詳見解析;(4)<n<.【解析】
(1)由正方形的性質及A、B、D三點的坐標求得AD=BC=1即可得;(2)把(0,0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公效率的全新定義電子病歷系統的全面推廣與應用
- 藝術徽章、紀念章企業數字化轉型與智慧升級戰略研究報告
- 電梯、自動扶梯及升降機企業縣域市場拓展與下沉戰略研究報告
- 航空運輸設備企業ESG實踐與創新戰略研究報告
- 大型郵資機企業數字化轉型與智慧升級戰略研究報告
- 航線記錄裝置企業縣域市場拓展與下沉戰略研究報告
- 存儲芯片企業數字化轉型與智慧升級戰略研究報告-20250401-224310
- 初中數學融入課程思政的路徑探索
- 社區安全文明課件
- 孔雀水墨畫課件
- 西師大版小學五年級 數學(下)期末測試題(含答案)
- 化工工藝原理考試題庫梳理
- 2025-2030氧化鈰納米粒子行業市場現狀供需分析及重點企業投資評估規劃分析研究報告
- 2024年青島西海岸新區教育和體育系統招聘工作人員考試真題
- 定金款管理制度
- 2025年貨運檢查員職業技能鑒定參考試題庫(含答案)
- 光伏電站安全培訓
- GB/T 37027-2025網絡安全技術網絡攻擊和網絡攻擊事件判定準則
- 2025年江蘇南通蘇北七市高三二模高考物理試卷(含答案詳解)
- 2024年藥理學考試真題回顧試題及答案
- 呼和浩特2025年內蒙古呼和浩特市融媒體中心第二批人才引進20人筆試歷年參考題庫附帶答案詳解
評論
0/150
提交評論